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igenvectors

{ i(t):Ax(f), t>0, (1)

(0)=X0 € X,

is the concept of Gy-semigroup.

A one-parameter family {T(¢)}>o : Ry — [X] — G-semigroup if:
Q T(O)T(s) =T(t+s), t,s>0;
Q 7(0)=1;
Q ItT(? IT(t)x — x|| =0, x € X.

Cy-semigroups play important role in operator theory, theory of
PDE’s and infinite-dimensional linear systems theory.

{T(t)}+>0 — operator A: X D D(A) — X,

which acts by the formula Ax = ]iﬂ)] w, x € D(A), with

D(A):{XEX Elhm T(r }
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igroups, known results and some open questions

LCn emigroups and evolution equations

The operator A is an infinitesimal generator (generator)

of Cy-semigroup in X < the Cauchy problem (1) is well-posed and
p(A) # 0. The solution is given by

x(+, x0) = T()xo.

xp € D(A) = classical solution
Xp € X = mild solution

Example (This phenomenon takes place for:)

@ Maxwell’s equations of electrodynamics
@ Systems of differential equations with delay

© Regular Sturm-Liouville systems

@ Linear heat and wave equations
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1ps, known results and some open qu

y and sufficient conditions for infinitesimality of operators

Central problems of Gy-semigroup theory are

@ To examine whether a concrete operator A is the generator of
Cp-semigroup (to examine the infinitesimality of A), and

@ To obtain the representation of this Cy-semigroup.

The criterion of infinitesimality of A:

Theorem (E. Hille, K. Yosida, R. Phillips, W. Feller, I. Miyadera)

The operator A: X D D(A) — X is the infinitesimal generator of
Go-semigroup {T(t)}>o satisfying ||T(t)|| < Me“" if and only if

@ D(A) is dense, A is closed, and
Q (w,+o0) C p(A) and VA > w, Vn € N we have

<M
s ()\_w)n'

H(/\/ - A"

But this theorem can be extremely rare used in practice because of complexity of
conditions 1 and 2. The Lumer-Phillips theorem is much more useful but it covers
only the case of contraction semigroups (M =1, w = 0).
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1 some open qu

The Riesz-basis property is valuable in an infinite-dimensional linear
systems theory.

This property is essentially used in the study of
@ Stability
© Controllability
@ Stabilization
@ Observability

© Spectral assignment
@ Asymptotic properties

of various infinite-dimensional linear systems.

In particular, R. Rabah, G. M. Sklyar, A. V. Rezounenko,

K. V. Sklyar, P. Barkhaev, P. Polak (University of Szczecin, Poland &
V. N. Karazin Kharkiv University, Ukraine, 2003-2016) studied all
these properties for linear delay systems of neutral type.




Theorem (G.Q). Xu & S.P. Yung, JDE, 2005, H. Zwart, JDE, 2010)

Let A be the generator of the Cy-group in H, with simple eigenvalues
{An}° and the corresp. (normalized) eigenvectors {¢,}°. If
Lin{¢,}° = H and

inf Ao = Anl >0, 2)

then {¢,}7° forms a Riesz basis of H.

Theorem (H. Zwart, JDE, 2010)

Let A be the generator of the Cy-group in H with eigenvalues {\,}°. If
the system of generalized eigenvectors is dense and

K
{A"}loo = U{)‘"J}(ﬁih Where IQ{: |/\",k - )\m7k‘ > 07 k - ]7 co0o0y K7 (3)

Jj=1

then 3 spectral projections {P,}° of A such that {P,H}° is a Riesz
basis of subspaces of H and maxdim P,H < K.
n
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s and some open qu

What happens when eigenvalues do not satisfy the condition (3)?

In particular:

@ Is it possible to construct the generator A of the Gy-group with
purely imaginary eigenvalues, which don’t satisfy (3), and dense
family of eigenvectors, which don’t form a Schauder basis?

@ When the Cauchy problem with such an operator A is
well /ill-posed?

In a joint work with Dr. Grigory Sklyar we obtain the following

Answers:

@ Yes, and we construct the class of generators of Cy-groups with
these preassigned properties.

@ The well-posedness of the Cauchy problem with such an operator
A essentially depends on the asymptotic behaviour of its
eigenvalues {\,}° at ico. We found conditions on the asymptotic
behaviour of {\,}° under which the corresponding Cauchy
problem is well /ill-posed.




To obtain these results we

@ Introduce and study special classes of Hilbert spaces Hy ({e,}),
k € N. Space Hi ({e,}) depend on an arbitrary separable Hilbert
space H and a chosen Riesz basis {e,}° of H.

@ Prove that {e,}° is dense and minimal in Hi ({e,}) but not
uniformly minimal, hence do not form a Schauder basis.

o Consider the classes Sk, k € N, of increasing sequences
{f(n)}:2, C R satisfying

{n’A’f(n)}oo € Lo

n=l

for 1 <j < k, where A is a difference operator.

Example (For every k € N:)

Q {Inn}2 €S, {Inn(n+1)}72, € Sk,
Q {Inln \/m}:; € Sk,
o {ﬁ}:il ¢ Sk




Choose separable Hilbert space H and let {e,}{ be an arbitrary Riesz
basis in H. Then we define a Hilbert space Hi ({e,}), k € N, as

He ({en}) = {x =1 cnen: {ca}i® € EZ(A")} , keN,

=x Z( 1Y Cico—jen

n=1j=

ioj (Akcn) en

n=l1

k

with H(f) io: Cnén

Here £,(AF) = {a = {a,}2,: Afa ety

The space £,(A) was first introduced and studied by F. Bagar &
B. Altay, Ukrainian Math. J., 2003. Later, in 2006, the space £,(AX),
k € N, was studied by B. Altay, Studia Sci. Math. Hungar.

Hi ({en}), k € N, is isomorphic to ¢, and the following holds:

HC Hi({en}) C Hx({en}) C Hs({en}) C




e =(1,0,0,0,0,...)", e, = (0,1,0,0,0,...)", es = (0,0,1,0,0,...)",
ey =(0,0,0,1,0,...)" ... we have

H ({en}) = b(A) = {{cn};’i, cC: Z |cn — ca|? < 00, € = O} .

n=l
v

Then we have that

@ For any a € [0, %) we have (1,2%,3%, 4% 5% ... )T € 6,(A); Indeed,
for a = 0 this is obvious. If a € (0, 3), then

n® —(n—=1)%~ con®"", n— oo,

where ¢, — constant depending on «. Consequently
{n® — (n=1)2}2, € by = (1,2%,3%,4%,5%, .)€ f,(A).
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LI\Ia‘in resul Hilbert st

central const

o Lin{e,}2, = £,(A), because only zero is orthogonal to all
en, n€N.

o {e,}22, do not form a Schauder basis of £,(A);

Suppose the opposite, i.e. that {e,}52, is a basis of ¢,(A). Then for
oo}
every x € £,(A) we have x = 3 c,e,. Since ||e,||y = v/2 for each n,

n=I
then, by the necessary condition of convergence of series, we will have

cn — 0, for n — oco. Consider x = (f) - e, = (I,1,1,1,...)" € £,(A).
n=l1
Then we arrive at

(]7],],], PN )T = (C], C2,C3,C4y. .. )T,

where ¢, — 0, for n — oo — a contradiction.



An operator A: £(A) D D(A) — £(A), defined by

q 0
C in2-c

A 3 = in3-¢c |,
c ilnd-c

with domain
D(A) = {{cn}p2y € (D) : {Inn-cu}2y € (D)},

generates the Cy-group {e}cr on £,(A), which is given by the

formula
q (&}
c eitln 2 o
et c3 =] e3¢ |, teR. (4)

elt In 4C4
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families of eigenvectors

Example (Operator with non-basis family of eigenvectors)

o Consider operator L : D(L) — Lp (R, C), defined by

Ly = =" +ixyp, 1€ D(L),

D(L)={vy € L,(Ry,C): x¢p € L, (R4,C), v € H} (Ry,C)} . Let
{pn}52, C R — decreasing sequence of zeros of Alry function
Ai(z). Then {\,}22,, where A, = e~ 5 yu,, n €N, includes all
eigenvalues of L. Since Iim tn = —oo and nleOO |tenr — n] = 0,

then {\,}52, satisfy hm |/\,,+1 An| = 0. Eigenfunctions of £ are

i, = Ai (e%"x+un) € H(R.,C), neN.

Normalized eigenfunctions u, = ”g—:”, n € N, are complete in
L (R, C), but don’t form a Schauder basis in L, (R, C), see
Y. Almog, The stability of the normal state of superconductors

in the presence of electric currents, STAM J. Math. Anal., 2008,
Vol. 40, pp. 824-850. (Ginzburg-Landau model)




Proposition (Spaces Hi ({en}), k € N, have the following properties:)

O Lin{e,}2) = H ({en});
Q {e,}52, does not form a basis of Hi ({en});

Q {e,}52, has a unique biorthogonal system
—k —k x>
Pa=0-1* -1 e}
in Hy ({en}), where Te, = e,11, n € N, and (e, ef) = o7
Q {xn}22, is uniformly minimal sequence in Hy ({e,}), {e,}2, is
minimal but not uniformly minimal in Hy ({e,});

@ Hi ({en}) is Hilbert space, isomorphic to £;

o0
QL= {x =(f) X cnen € He ({en}) & {ca}2, € bo(AF) N co}, where
n=1
¢o is the space of sequences {«,}2; with Ii)m o, =0, is not a
n—o0o

(closed) subspace of Hy ({e,}).




Theorem (The generalization)

Let k € N. Then the operator A, : Hi ({e,}) D D(Ax) — Hi ({en}),
defined by

Aex = Ac(f) Z cnen = (F) Z if (n) - chen,

where {f(n)}3%, € Se = {{f(n}°: lim_f(n) = +oo;
{WOf(n)}7°, € loo for 1< < k}, it domain

D(Ax) = {X = (1)) coen € He({en}) : {f(n) - ca}iy € Ez(Ak)} ;

generates the Cy-group {&™'};cr on Hi ({e,}), which is given by

eMix = M () Z cnen = (f) Z e e, t € R. (5)
n=1 n=1
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ain results: Hilbert space cas

L The results generalization: ential ingredients of the proof

oo 1 n 2 oo
> (1) <4y
n=1 nk:] n=1

plays the key role in the proof of these theorems.

In the proof we also use the Leibnitz theorem for finite differences,

k
AXupv,) = > GA T u, Ay, k€N,
j=0
and the following formula,

Alc, = ZAdHcm, d,neN.

m=1
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ial ingredients of the proof

Let m: 1< m < k. Consider the following sets ¥; = {0,1,2,...,k —1},
Y, ={0,1,2,... . k—2},..., Ty = {0,1}, ¢ = {0}. Clearly,

21D D¥3D - D g One of the essential ingredients of the proof
of this theorem is the following fact.

Proposition

~ oo
For every m: 1< m < k, each { f(n) €S, forallse X, teR

=
—

and arbitrary n > m the following ine?q_uality holds:

Po [F()] (1¢)

et < ZDDI0, ©)

where P, V( n)} is a polynomial of degree m, with positive coefficients

depending on {?(n)} , and without a free term.
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spectral properties

Remark

@ The spectrum of A is o(Ax) = op(Ac) = {if(n)}7° = {An}7° C IR,
it satisfies

lim i\, = —o0, lim |Apq — A =0,
n— 00 n—r00

and the corresp. eigenvectors {e,}>2, are dense and minimal,

hence D(Ar) = Hi ({en}), but do not form a Schauder basis.

o0
@ The resolvent of A is given by (Ax — M) ™' x = (f) 3 OIS

n=I

A € p(Ar) = C\ {if(n)}e°, where x = (f) 2 e )

| A

Remark
Note that the sequence {f(n)}°, although satisfies lim f(n) = +o0
n—oo

)
need not to be monotone and the spectrum o(Ax) = op(Ac) = {if ()}
of operator Ay from our theorem need not to be simple.

<
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L The results: generalization: well-posedness and asymptotic behaviour

For each k € N the Cauchy problem

RO "

with Ay from the above theorem is well-posed, and the solution is
given by the formula (5), where x = Xxo.

| 5\

Proposition

Let k € N and {eA“ } (R 1S the Gy-group from the above theorem.
Then:

o HeA“H — 00, when t — +o00.

@ There exists a polynomial p; with positive coefficients,
degpy = k, such that for every t € R we have

[ || < pi(|])-




So our class of Cy-groups belongs to the class P of polynomially
bounded Cy-groups studied by T. Eisner, H. Zwart, M. Malejki from
2000’s. The class B, in its turn, belongs to the class of
nonquasianalytic groups studied by Yu. I. Lyubic, V. I. Matsaev and
V. Q. Phong in 1960’s-1990’s.

Combining the above proposition with result of T. Eisner & H. Zwart
(Semigroup Forum, 2007) we obtain the following.

Proposition

Let k € N and A is the generator of Gy-group from the above
theorem. Then for every a > 0 there exists C > 0 such that

Q H(Ak - )\I)le < W, for allA: 0 < |RA| < @;

Q H(Ak = )\I)_]H < C, forallX: |RA >a.
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Banach se

L Preliminary constructio: symmetric bases

Also we study the questions posed at the beginning

in the Banach space setting and obtain similar answers!

y obtain tl

o Introduce and study special classes of Banach spaces £, ({en}),
p >1, k € N. Space £, ({en}) depend on ¢, space and a chosen
symmetric basis {e,}; of /.

@ Prove that, if p > 1, then {e,}° is dense and minimal in
£y ({en}) but not uniformly minimal, hence do not form a
Schauder basis.

@ Consider our classes of increasing sequences S, k € N.

The concept of symmetric basis

was first introduced and studied by I. Singer, Revue de math. pures et
appl., 1961, in connection with S. Banach’s closed hyperplane problem
and related question of C. Bessaga & A. Pelczynski from isomorphic
theory of Banach spaces.
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L Main results:

provided each permutation {¢,(n}n2; of basis {¢,}2; also forms a
basis of X, isomorphic to {¢,}5,.

<

@ The canonical basis of £, and ¢; space is symmetric.

@ The class of symmetric bases in a Hilbert space coincides with
the class of Riesz bases.

@ The space L,(0,1),1< p # 2, does not have a symmetric basis.

space £, 1 < p < 00, has unique, up to isomorphism, symmetric basis.
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ain results:

L1:’1'elimi ructions: symmetric bases

So we arrive at the following

Proposition

Let {¢n}72, be a basis of £,, 1 < p < co. Then {¢,}2, forms a
symmetric basis of £, if and only if there exists constants M > m > 0

o0
such that for each x = ) ap¢, € £, we have

n=l

m{x|lP <Y lowl? < M]x]P. (8)

n=1

This proposition is at the core of generalizations of our results to the
case of Banach spaces of special structure.
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ymmetric bases and the construction of spaces £, ({es}), p>1, k€N

Choose the space ¢, and let {e,}7° be an arbitrary symmetric basis in
{y, p > 1. Then we define a Banach space £, ({es}), p>1, k€N, as

lpk ({en}) = {X = (f)z cnen: {Cntnsy € gp(Ak)} ,p>1 keN,

[eS) o) o k L.
with H(f) S cnen|| = |12 (AFcn) en|| = || D2 (—1)V Clenjen]| -
n=1 k n=1 n=1j=0

Here (,(AF) = {a = {a,}32, 0 Aka € ¢,}.

by C by ({en}) C lp2({en}) C ps({en}) C ..
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Q If p>1, then Lin{e,}72, = €« ({en});
@ {e,} 2, does not form a basis of £, ({en});
@ If p > 1, then {e,}52, has a unique biorthogonal system

[a=0=-n -1}

in (¢ pk({en}))* where Te, = e,1, n € N, and {e &, is

n=l

biorthogonal to {e,}52, basis of £;, where 1 + =1

Q If p>1, then {x,}52, is uniformly minimal sequence in
(. ({e,,],~))>k while the sequence {e,}22, is minimal but not
uniformly minimal in £, ({e,});

QL= { ()cheneép,k({e,,}) {en}2y € 4,(A )ﬂco} is not
a (closed) subspace of £px ({en})-
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case

Theorem

Let {e,}72, be a symmetric basis of £,, p >1and k € N. Then {e,}2,
does not form a Schauder basis of £, ({e,}) and the operator
Ac Ly ({en}) D D(Ak) = €y k ({en}) , defined by

Aex = Ak() Z cnen = (f) Z if(n) - cnen,
n=1 n=1
where {f(n)} 2, € Sk, with domain

D(Ae) = {X = (f) D cnen € Lps ({ea}) = {F(n) - cn}is € fp(Ak)} ;

n=l1

generates the Gy-group {e*'}cr on £, ({e,}), which is given by

eMx = eAkt(f) Z Chép = (f) Z eitf(n) Cnén. (9)
n=I n=1




y of eigenvectors

dy inequality for p > 1

>(e) = (G5) &

n=l n=1

plays the key role in the proof of this theorem.

i
Remark

@ The spectrum of Ag is o,(Ac) = {if(n)}7° = { A }7° C IR, it satisfies

lim i\, = —o0, lim |App — A =0,
n—oo n—oo

and the corresp. eigenvectors {e,}72; are dense and minimal, but do
not form a Schauder basis.

OO
@ The resolvent of A is given by (Ax — M)~ 'x = () 3 T
n=1

X € plA) = C\ {F(m)}7*, where x = (1) 3 coen € i ({e).
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pace

d the upper bound

The proof of this theorem is similar to the proof of infinitesimality
result in spaces Hi ({e,}), k € N, and the ingredients are the same.

Corollary

For each k € N the Cauchy problem

{ x(t) = Ax(t), teR, (10)

x(0) = xo,

with Ay from the above theorem is well-posed, and the solution is
given by the formula (9), where x = xo.

| A

Proposition

The class of Gy-groups {eA“} teR from the above theorem also belongs
to the class of polynomially bounded Cy-groups.

\
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s in H ({en}) and £, ({en})

Proposition

Let {\;}52, C iR satisfy

n]me i\, = —00, nleOO [Ansi — Al =0,
and Jda € (O, %] : liminf n®| A, — A,—1| > 0. Then the operator A, defined
n—oo

by Ax = A(f) X cnen = (§) D Ancren, with domain
n=1

n=I
D(A) = {x =(f) > cnen € Hi({en}) @ {Ancn}S2, € ZZ(A)} , does not
n=1
generate the Gy-semigroup on the space H, ({e,}).

We can take A\, = iy/n, n € N.

The Cauchy problem (1) with A from the proposition above is
ill-posed on H ({en}) .
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L Open problems

Open questions:

@ [s it possible to construct the unbounded generator of the
Co-group with purely imaginary eigenvalues not satisfying (3)
and family of eigenvectors, which form
a bounded non-Riesz basis in a Hilbert space?

@ What natural evolution phenomena are described by a such kind
of evolution equations?

@ What happens between ilnn and iy/n in our constructions in
H ({en})?
@ How can the spectral theorem of G.Q. Xu & S.P. Yung, and

H. Zwart be generalized to the case of some kind of bases in
Banach spaces, e.g. symmetric bases?
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L Thanks!

Thanks for the attention!
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