Infinitesimality of operators with non-basis family of eigenvectors

Vitalii Marchenko

ILTPE of NASU, Kharkiv, Ukraine

Scientific superviser: Dr. Grigory Sklyar, University of Szczecin, Poland

A trilateral German-Russian-Ukrainian summer school Spectral Theory, Differential Equations and Probability, Johannes Gutenberg Universität Mainz, Germany, 4-15 September 2016

The fundamental concept for the study of linear evolution equations

$$
\left\{\begin{array}{l}
\dot{x}(t)=A x(t), \quad t \geq 0 \tag{1}\\
x(0)=x_{0} \in X
\end{array}\right.
$$

is the concept of C_{0}-semigroup.
A one-parameter family $\{T(t)\}_{t \geq 0}: \mathbb{R}_{+} \mapsto[X]-\underline{C_{0} \text {-semigroup if: }}$
(1) $T(t) T(s)=T(t+s), t, s \geq 0$;
(2) $T(0)=I$;
(3) $\lim _{t \downarrow 0}\|T(t) x-x\|=0, x \in X$.
C_{0}-semigroups play important role in operator theory, theory of PDE's and infinite-dimensional linear systems theory.

Generator of C_{0}-semigroup $\{T(t)\}_{t \geq 0}$ - operator $A: X \supset D(A) \mapsto X$,

which acts by the formula $A x=\lim _{t \downarrow 0} \frac{T(t) x-x}{t}, x \in D(A)$, with

$$
D(A)=\left\{x \in X: \exists \lim _{t \downarrow 0} \frac{T(t) x-x}{t}\right\}
$$

L_{0}-semigroups and evolution equations

The operator A is an infinitesimal generator (generator)

of C_{0}-semigroup in $X \Leftrightarrow$ the Cauchy problem (1) is well-posed and $\rho(A) \neq \emptyset$. The solution is given by

$$
x\left(\cdot, x_{0}\right)=T(\cdot) x_{0} .
$$

$x_{0} \in D(A) \Longrightarrow$ classical solution
$x_{0} \in X \Longrightarrow$ mild solution
Example (This phenomenon takes place for:)
(1) Maxwell's equations of electrodynamics
(2) Systems of differential equations with delay
(3) Regular Sturm-Liouville systems
(4) Linear heat and wave equations
-Necessary and sufficient conditions for infinitesimality of operators

Central problems of C_{0}-semigroup theory are

(1) To examine whether a concrete operator A is the generator of C_{0}-semigroup (to examine the infinitesimality of A), and
(2) To obtain the representation of this C_{0}-semigroup.

The criterion of infinitesimality of A :

Theorem (E. Hille, K. Yosida, R. Phillips, W. Feller, I. Miyadera)

The operator $A: X \supset D(A) \mapsto X$ is the infinitesimal generator of C_{0}-semigroup $\{T(t)\}_{t \geq 0}$ satisfying $\|T(t)\| \leq M e^{\omega t}$ if and only if
(1) $D(A)$ is dense, A is closed, and
(2) $(\omega,+\infty) \subseteq \rho(A)$ and $\forall \lambda>\omega, \forall n \in \mathbb{N}$ we have

$$
\left\|(\lambda I-A)^{-n}\right\| \leq \frac{M}{(\lambda-\omega)^{n}}
$$

But this theorem can be extremely rare used in practice because of complexity of conditions 1 and 2. The Lumer-Phillips theorem is much more useful but it covers only the case of contraction semigroups ($M=1, \omega=0$).
-The Riesz-basis property
The Riesz-basis property is valuable in an infinite-dimensional linear systems theory.

This property is essentially used in the study of
(1) Stability
(2) Controllability
(3) Stabilization
(4) Observability
(5) Spectral assignment
(6) Asymptotic properties
of various infinite-dimensional linear systems.
In particular, R. Rabah, G. M. Sklyar, A. V. Rezounenko,
K. V. Sklyar, P. Barkhaev, P. Polak (University of Szczecin, Poland \& V. N. Karazin Kharkiv University, Ukraine, 2003-2016) studied all these properties for linear delay systems of neutral type.
-The results of G.Q. Xu \& S.P. Yung, and H. Zwart

Theorem (G.Q. Xu \& S.P. Yung, JDE, 2005, H. Zwart, JDE, 2010)

Let A be the generator of the C_{0}-group in H, with simple eigenvalues $\left\{\lambda_{n}\right\}_{1}^{\infty}$ and the corresp. (normalized) eigenvectors $\left\{\phi_{n}\right\}_{1}^{\infty}$. If $\overline{\operatorname{Lin}}\left\{\phi_{n}\right\}_{1}^{\infty}=H$ and

$$
\begin{equation*}
\inf _{n \neq m}^{n \neq m}\left|\lambda_{n}-\lambda_{m}\right|>0, \tag{2}
\end{equation*}
$$

then $\left\{\phi_{n}\right\}_{1}^{\infty}$ forms a Riesz basis of H.

Theorem (H. Zwart, JDE, 2010)

Let A be the generator of the C_{0}-group in H with eigenvalues $\left\{\lambda_{n}\right\}_{1}^{\infty}$. If the system of generalized eigenvectors is dense and

$$
\begin{equation*}
\left\{\lambda_{n}\right\}_{1}^{\infty}=\bigcup_{j=1}^{K}\left\{\lambda_{n, j}\right\}_{n=1}^{\infty} \text {, where } \inf _{n \neq m}\left|\lambda_{n, k}-\lambda_{m, k}\right|>0, k=1, \ldots, K, \tag{3}
\end{equation*}
$$

then \exists spectral projections $\left\{P_{n}\right\}_{1}^{\infty}$ of A such that $\left\{P_{n} H\right\}_{1}^{\infty}$ is a Riesz basis of subspaces of H and $\max \operatorname{dim} P_{n} H \leq K$.

What happens when eigenvalues do not satisfy the condition (3)?

In particular:
(1) Is it possible to construct the generator A of the C_{0}-group with purely imaginary eigenvalues, which don't satisfy (3), and dense family of eigenvectors, which don't form a Schauder basis?
(2) When the Cauchy problem with such an operator A is well/ill-posed?

In a joint work with Dr. Grigory Sklyar we obtain the following

Answers:

(1) Yes, and we construct the class of generators of C_{0}-groups with these preassigned properties.
(2) The well-posedness of the Cauchy problem with such an operator A essentially depends on the asymptotic behaviour of its eigenvalues $\left\{\lambda_{n}\right\}_{1}^{\infty}$ at $i \infty$. We found conditions on the asymptotic behaviour of $\left\{\lambda_{n}\right\}_{1}^{\infty}$ under which the corresponding Cauchy problem is well/ill-posed.

To obtain these results we

- Introduce and study special classes of Hilbert spaces $H_{k}\left(\left\{e_{n}\right\}\right)$, $k \in \mathbb{N}$. Space $H_{k}\left(\left\{e_{n}\right\}\right)$ depend on an arbitrary separable Hilbert space H and a chosen Riesz basis $\left\{e_{n}\right\}_{1}^{\infty}$ of H.
- Prove that $\left\{e_{n}\right\}_{1}^{\infty}$ is dense and minimal in $H_{k}\left(\left\{e_{n}\right\}\right)$ but not uniformly minimal, hence do not form a Schauder basis.
- Consider the classes $\mathcal{S}_{k}, k \in \mathbb{N}$, of increasing sequences $\{f(n)\}_{n=1}^{\infty} \subset \mathbb{R}$ satisfying

$$
\left\{n^{j} \Delta^{j} f(n)\right\}_{n=1}^{\infty} \in \ell_{\infty}
$$

for $1 \leq j \leq k$, where Δ is a difference operator.

Example (For every $k \in \mathbb{N}$:)

(1) $\{\ln n\}_{n=1}^{\infty} \in \mathcal{S}_{k},\{\ln \ln (n+1)\}_{n=1}^{\infty} \in \mathcal{S}_{k}$,
(2) $\{\ln \ln \sqrt{n+1}\}_{n=1}^{\infty} \in \mathcal{S}_{k}$,
(3) $\{\sqrt{n}\}_{n=1}^{\infty} \notin \mathcal{S}_{k}$.

- Preliminary constructions

Spaces $H_{k}\left(\left\{e_{n}\right\}\right), k \in \mathbb{N}$

Choose separable Hilbert space H and let $\left\{e_{n}\right\}_{1}^{\infty}$ be an arbitrary Riesz basis in H. Then we define a Hilbert space $H_{k}\left(\left\{e_{n}\right\}\right), k \in \mathbb{N}$, as

$$
H_{k}\left(\left\{e_{n}\right\}\right)=\left\{x=(\mathfrak{f}) \sum_{n=1}^{\infty} c_{n} e_{n}:\left\{c_{n}\right\}_{1}^{\infty} \in \ell_{2}\left(\Delta^{k}\right)\right\}, k \in \mathbb{N}
$$

with $\left\|(\mathfrak{f}) \sum_{n=1}^{\infty} c_{n} e_{n}\right\|_{k}=\left\|\sum_{n=1}^{\infty}\left(\Delta^{k} c_{n}\right) e_{n}\right\|=\left\|\sum_{n=1}^{\infty} \sum_{j=0}^{k}(-1)^{j} C_{k}^{j} c_{n-j} e_{n}\right\|$.
Here $\ell_{2}\left(\Delta^{k}\right)=\left\{\alpha=\left\{\alpha_{n}\right\}_{n=1}^{\infty}: \Delta^{k} \alpha \in \ell_{2}\right\}$.
The space $\ell_{2}(\Delta)$ was first introduced and studied by F. Başar \& B. Altay, Ukrainian Math. J., 2003. Later, in 2006, the space $\ell_{2}\left(\Delta^{k}\right)$, $k \in \mathbb{N}$, was studied by B. Altay, Studia Sci. Math. Hungar.
$H_{k}\left(\left\{e_{n}\right\}\right), k \in \mathbb{N}$, is isomorphic to ℓ_{2} and the following holds:
$H \subset H_{1}\left(\left\{e_{n}\right\}\right) \subset H_{2}\left(\left\{e_{n}\right\}\right) \subset H_{3}\left(\left\{e_{n}\right\}\right) \subset \ldots$

In particular case when $k=1$ and $\left\{e_{n}\right\}_{n=1}^{\infty}$ is a canonical basis of ℓ_{2},

$$
\begin{aligned}
& e_{1}=(1,0,0,0,0, \ldots)^{T}, e_{2}=(0,1,0,0,0, \ldots)^{T}, e_{3}=(0,0,1,0,0, \ldots)^{T} \\
& e_{4}=(0,0,0,1,0, \ldots)^{T}, \ldots \text { we have } \\
& \quad H_{1}\left(\left\{e_{n}\right\}\right)=\ell_{2}(\Delta)=\left\{\left\{c_{n}\right\}_{n=1}^{\infty} \subset \mathbb{C}: \sum_{n=1}^{\infty}\left|c_{n}-c_{n-1}\right|^{2}<\infty, c_{0}=0\right\}
\end{aligned}
$$

Then we have that

- For any $\alpha \in\left[0, \frac{1}{2}\right)$ we have $\left(1,2^{\alpha}, 3^{\alpha}, 4^{\alpha}, 5^{\alpha}, \ldots\right)^{T} \in \ell_{2}(\Delta)$; Indeed, for $\alpha=0$ this is obvious. If $\alpha \in\left(0, \frac{1}{2}\right)$, then

$$
n^{\alpha}-(n-1)^{\alpha} \sim c_{\alpha} n^{\alpha-1}, n \rightarrow \infty
$$

where c_{α} - constant depending on α. Consequently

$$
\left\{n^{\alpha}-(n-1)^{\alpha}\right\}_{n=1}^{\infty} \in \ell_{2} \Longrightarrow\left(1,2^{\alpha}, 3^{\alpha}, 4^{\alpha}, 5^{\alpha}, \ldots\right)^{T} \in \ell_{2}(\Delta)
$$

- $\overline{\operatorname{Lin}}\left\{e_{n}\right\}_{n=1}^{\infty}=\ell_{2}(\Delta)$, because only zero is orthogonal to all $e_{n}, n \in \mathbb{N}$.
- $\left\{e_{n}\right\}_{n=1}^{\infty}$ do not form a Schauder basis of $\ell_{2}(\Delta)$;

Suppose the opposite, i.e. that $\left\{e_{n}\right\}_{n=1}^{\infty}$ is a basis of $\ell_{2}(\Delta)$. Then for every $x \in \ell_{2}(\Delta)$ we have $x=\sum_{n=1}^{\infty} c_{n} e_{n}$. Since $\left\|e_{n}\right\|_{1}=\sqrt{2}$ for each n, then, by the necessary condition of convergence of series, we will have $c_{n} \rightarrow 0$, for $n \rightarrow \infty$. Consider $x=(\mathfrak{f}) \sum_{n=1}^{\infty} e_{n}=(1,1,1,1, \ldots)^{T} \in \ell_{2}(\Delta)$.
Then we arrive at

$$
(1,1,1,1, \ldots)^{T}=\left(c_{1}, c_{2}, c_{3}, c_{4}, \ldots\right)^{T}
$$

where $c_{n} \rightarrow 0$, for $n \rightarrow \infty-$ a contradiction.
-The results: central construction

Theorem (Central construction)

An operator $A: \ell_{2}(\Delta) \supset D(A) \mapsto \ell_{2}(\Delta)$, defined by

$$
A\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4} \\
\cdots
\end{array}\right)=\left(\begin{array}{c}
0 \\
i \ln 2 \cdot c_{2} \\
i \ln 3 \cdot c_{3} \\
i \ln 4 \cdot c_{4} \\
\cdots
\end{array}\right)
$$

with domain

$$
D(A)=\left\{\left\{c_{n}\right\}_{n=1}^{\infty} \in \ell_{2}(\Delta):\left\{\ln n \cdot c_{n}\right\}_{n=1}^{\infty} \in \ell_{2}(\Delta)\right\}
$$

generates the C_{0}-group $\left\{e^{A t}\right\}_{t \in \mathbb{R}}$ on $\ell_{2}(\Delta)$, which is given by the formula

$$
e^{A t}\left(\begin{array}{c}
c_{1} \tag{4}\\
c_{2} \\
c_{3} \\
c_{4} \\
\cdots
\end{array}\right)=\left(\begin{array}{c}
c_{1} \\
e^{i t \ln 2} c_{2} \\
e^{i t \ln 3} c_{3} \\
e^{i t \ln 4} c_{4} \\
\cdots
\end{array}\right), t \in \mathbb{R}
$$

Example (Operator with non-basis family of eigenvectors)

- Consider operator $\mathcal{L}: D(\mathcal{L}) \mapsto L_{2}(\mathbb{R}, \mathbb{C})$, defined by

$$
\mathcal{L} \psi=-\psi^{\prime \prime}+i x \psi, \quad \psi \in D(\mathcal{L})
$$

$D(\mathcal{L})=\left\{\psi \in L_{2}\left(\mathbb{R}_{+}, \mathbb{C}\right): x \psi \in L_{2}\left(\mathbb{R}_{+}, \mathbb{C}\right), \psi \in H_{0}^{2}\left(\mathbb{R}_{+}, \mathbb{C}\right)\right\}$. Let $\left\{\mu_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R}$ - decreasing sequence of zeros of Airy function $\operatorname{Ai}(z)$. Then $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$, where $\lambda_{n}=e^{-\frac{2 \pi i}{3}} \mu_{n}, \quad n \in \mathbb{N}$, includes all eigenvalues of \mathcal{L}. Since $\lim _{n \rightarrow \infty} \mu_{n}=-\infty$ and $\lim _{n \rightarrow \infty}\left|\mu_{n+1}-\mu_{n}\right|=0$, then $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ satisfy $\lim _{n \rightarrow \infty}\left|\lambda_{n+1}-\lambda_{n}\right|=0$. Eigenfunctions of \mathcal{L} are

$$
\tilde{u}_{n}=A i\left(e^{\frac{\pi i}{6}} x+\mu_{n}\right) \in H_{0}^{2}\left(\mathbb{R}_{+}, \mathbb{C}\right), \quad n \in \mathbb{N}
$$

Normalized eigenfunctions $u_{n}=\frac{\tilde{u}_{n}}{\left\|\tilde{u}_{n}\right\|}, n \in \mathbb{N}$, are complete in $L_{2}(\mathbb{R}, \mathbb{C})$, but don't form a Schauder basis in $L_{2}(\mathbb{R}, \mathbb{C})$, see
Y. Almog, The stability of the normal state of superconductors in the presence of electric currents, SIAM J. Math. Anal., 2008, Vol. 40, pp. 824-850. (Ginzburg-Landau model)

Proposition (Spaces $H_{k}\left(\left\{e_{n}\right\}\right), k \in \mathbb{N}$, have the following properties:)

(1) $\overline{\operatorname{Lin}}\left\{e_{n}\right\}_{n=1}^{\infty}=H_{k}\left(\left\{e_{n}\right\}\right)$;
(2) $\left\{e_{n}\right\}_{n=1}^{\infty}$ does not form a basis of $H_{k}\left(\left\{e_{n}\right\}\right)$;
(3) $\left\{e_{n}\right\}_{n=1}^{\infty}$ has a unique biorthogonal system

$$
\left\{\chi_{n}=(I-T)^{-k}\left(I-T^{*}\right)^{-k} e_{n}^{*}\right\}_{n=1}^{\infty}
$$

in $H_{k}\left(\left\{e_{n}\right\}\right)$, where $T e_{n}=e_{n+1}, n \in \mathbb{N}$, and $\left\langle e_{n}, e_{m}^{*}\right\rangle=\delta_{n}^{m}$;
(4) $\left\{\chi_{n}\right\}_{n=1}^{\infty}$ is uniformly minimal sequence in $H_{k}\left(\left\{e_{n}\right\}\right),\left\{e_{n}\right\}_{n=1}^{\infty}$ is minimal but not uniformly minimal in $H_{k}\left(\left\{e_{n}\right\}\right)$;
(5) $H_{k}\left(\left\{e_{n}\right\}\right)$ is Hilbert space, isomorphic to ℓ_{2};
(6) $L=\left\{x=(\mathfrak{f}) \sum_{n=1}^{\infty} c_{n} e_{n} \in H_{k}\left(\left\{e_{n}\right\}\right):\left\{c_{n}\right\}_{n=1}^{\infty} \in \ell_{2}\left(\Delta^{k}\right) \cap c_{0}\right\}$, where c_{0} is the space of sequences $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ with $\lim _{n \rightarrow \infty} \alpha_{n}=0$, is not a (closed) subspace of $H_{k}\left(\left\{e_{n}\right\}\right)$.

Theorem (The generalization)

Let $k \in \mathbb{N}$. Then the operator $A_{k}: H_{k}\left(\left\{e_{n}\right\}\right) \supset D\left(A_{k}\right) \mapsto H_{k}\left(\left\{e_{n}\right\}\right)$, defined by

$$
A_{k} x=A_{k}(\mathfrak{f}) \sum_{n=1}^{\infty} c_{n} e_{n}=(\mathfrak{f}) \sum_{n=1}^{\infty} i f(n) \cdot c_{n} e_{n}
$$

where $\{f(n)\}_{n=1}^{\infty} \in \mathcal{S}_{k}=\left\{\{f(n)\}_{1}^{\infty}: \lim _{n \rightarrow \infty} f(n)=+\infty\right.$; $\left\{n^{j} \Delta^{j} f(n)\right\}_{n=1}^{\infty} \in \ell_{\infty}$ for $\left.1 \leq j \leq k\right\}$, with domain

$$
D\left(A_{k}\right)=\left\{x=(\mathfrak{f}) \sum_{n=1}^{\infty} c_{n} e_{n} \in H_{k}\left(\left\{e_{n}\right\}\right):\left\{f(n) \cdot c_{n}\right\}_{n=1}^{\infty} \in \ell_{2}\left(\Delta^{k}\right)\right\}
$$

generates the C_{0}-group $\left\{e^{A_{k} t}\right\}_{t \in \mathbb{R}}$ on $H_{k}\left(\left\{e_{n}\right\}\right)$, which is given by

$$
\begin{equation*}
e^{A_{k} t} X=e^{A_{k} t}(\mathfrak{f}) \sum_{n=1}^{\infty} c_{n} e_{n}=(\mathfrak{f}) \sum_{n=1}^{\infty} e^{i f f(n)} c_{n} e_{n}, t \in \mathbb{R} \tag{5}
\end{equation*}
$$

Multiple application of the discrete Hardy inequality for $p=2$

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n} a_{k}\right)^{2} \leq 4 \sum_{n=1}^{\infty} a_{n}^{2}
$$

plays the key role in the proof of these theorems.
In the proof we also use the Leibnitz theorem for finite differences,

$$
\Delta^{k}\left(u_{n} v_{n}\right)=\sum_{j=0}^{k} C_{k}^{j} \Delta^{k-j} u_{n-j} \Delta^{j} v_{n}, \quad k \in \mathbb{N},
$$

and the following formula,

$$
\Delta^{d} c_{n}=\sum_{m=1}^{n} \Delta^{d+1} c_{m}, \quad d, n \in \mathbb{N}
$$

Let $m: 1 \leq m \leq k$. Consider the following sets $\Sigma_{1}=\{0,1,2, \ldots, k-1\}$, $\Sigma_{2}=\{0,1,2, \ldots, k-2\}, \ldots, \Sigma_{k-1}=\{0,1\}, \Sigma_{k}=\{0\}$. Clearly, $\Sigma_{1} \supset \Sigma_{2} \supset \Sigma_{3} \supset \cdots \supset \Sigma_{k}$. One of the essential ingredients of the proof of this theorem is the following fact.

Proposition

For every $m: 1 \leq m \leq k$, each $\{\widetilde{f}(n)\}_{n=1}^{\infty} \in \mathcal{S}_{k}$, for all $s \in \Sigma_{m}, t \in \mathbb{R}$ and arbitrary $n>m$ the following inequality holds:

$$
\begin{equation*}
\left|\Delta^{m} e^{(-1)^{s} i t \Delta^{\tilde{f}}(n)}\right| \leq \frac{\mathcal{P}_{m}[\widetilde{f}(n)](|t|)}{n^{m+s}} \tag{6}
\end{equation*}
$$

where $\mathcal{P}_{m}[\widetilde{f}(n)]$ is a polynomial of degree m, with positive coefficients depending on $\{\widetilde{f}(n)\}_{n=1}^{\infty}$, and without a free term.

Remark

- The spectrum of A_{k} is $\sigma\left(A_{k}\right)=\sigma_{p}\left(A_{k}\right)=\{i f(n)\}_{1}^{\infty}=\left\{\lambda_{n}\right\}_{1}^{\infty} \subset i \mathbb{R}$, it satisfies

$$
\lim _{n \rightarrow \infty} i \lambda_{n}=-\infty, \quad \lim _{n \rightarrow \infty}\left|\lambda_{n+1}-\lambda_{n}\right|=0
$$

and the corresp. eigenvectors $\left\{e_{n}\right\}_{n=1}^{\infty}$ are dense and minimal, hence $\overline{D\left(A_{k}\right)}=H_{k}\left(\left\{e_{n}\right\}\right)$, but do not form a Schauder basis.

- The resolvent of A_{k} is given by $\left(A_{k}-\lambda I\right)^{-1} x=(\mathfrak{f}) \sum_{n=1}^{\infty} \frac{c_{n} e_{n}}{i f(n)-\lambda}$,

$$
\lambda \in \rho\left(A_{k}\right)=\mathbb{C} \backslash\{\text { if }(n)\}_{1}^{\infty}, \text { where } x=(\mathfrak{f}) \sum_{n=1}^{\infty} c_{n} e_{n} \in H_{k}\left(\left\{e_{n}\right\}\right)
$$

Remark

Note that the sequence $\{f(n)\}_{1}^{\infty}$, although satisfies $\lim _{n \rightarrow \infty} f(n)=+\infty$, need not to be monotone and the spectrum $\sigma\left(A_{k}\right)=\sigma_{p}\left(A_{k}\right)=\{\text { if }(n)\}_{1}^{\infty}$ of operator A_{k} from our theorem need not to be simple.

Corollary

For each $k \in \mathbb{N}$ the Cauchy problem

$$
\left\{\begin{array}{l}
\dot{x}(t)=A_{k} x(t), \quad t \in \mathbb{R}, \tag{7}\\
x(0)=x_{0},
\end{array}\right.
$$

with A_{k} from the above theorem is well-posed, and the solution is given by the formula (5), where $x=x_{0}$.

Proposition

Let $k \in \mathbb{N}$ and $\left\{e^{A_{k} t}\right\}_{t \in \mathbb{R}}$ is the C_{0}-group from the above theorem. Then:
(1) $\left\|e^{A_{k} t}\right\| \rightarrow \infty$, when $t \rightarrow \pm \infty$.
(2) There exists a polynomial \mathfrak{p}_{k} with positive coefficients, $\operatorname{deg} \mathfrak{p}_{k}=k$, such that for every $t \in \mathbb{R}$ we have

$$
\left\|e^{A_{k} t}\right\| \leq \mathfrak{p}_{k}(|t|)
$$

So our class of C_{0}-groups belongs to the class \mathfrak{P} of polynomially bounded C_{0}-groups studied by T. Eisner, H. Zwart, M. Malejki from 2000's. The class \mathfrak{P}, in its turn, belongs to the class of nonquasianalytic groups studied by Yu. I. Lyubic, V. I. Matsaev and V. Q. Phong in 1960's-1990's.

Combining the above proposition with result of T. Eisner \& H. Zwart (Semigroup Forum, 2007) we obtain the following.

Proposition

Let $k \in \mathbb{N}$ and A_{k} is the generator of C_{0}-group from the above theorem. Then for every $a>0$ there exists $C>0$ such that
(1) $\left\|\left(A_{k}-\lambda I\right)^{-1}\right\| \leq \frac{C}{|\Re \lambda|^{k+1}}, \quad$ for all $\lambda: 0<|\Re \lambda|<a$;
(2) $\left\|\left(A_{k}-\lambda I\right)^{-1}\right\| \leq C, \quad$ for all $\lambda:|\Re \lambda| \geq a$.
-Preliminary constructions: symmetric bases

Also we study the questions posed at the beginning

in the Banach space setting and obtain similar answers!

To obtain these results we

- Introduce and study special classes of Banach spaces $\ell_{p, k}\left(\left\{e_{n}\right\}\right)$, $p \geq 1, k \in \mathbb{N}$. Space $\ell_{p, k}\left(\left\{e_{n}\right\}\right)$ depend on ℓ_{p} space and a chosen symmetric basis $\left\{e_{n}\right\}_{1}^{\infty}$ of ℓ_{p}.
- Prove that, if $p>1$, then $\left\{e_{n}\right\}_{1}^{\infty}$ is dense and minimal in $\ell_{p, k}\left(\left\{e_{n}\right\}\right)$ but not uniformly minimal, hence do not form a Schauder basis.
- Consider our classes of increasing sequences $\mathcal{S}_{k}, k \in \mathbb{N}$.

The concept of symmetric basis

was first introduced and studied by I. Singer, Revue de math. pures et appl., 1961, in connection with S. Banach's closed hyperplane problem and related question of C. Bessaga \& A. Pelczynski from isomorphic theory of Banach spaces.

A basis $\left\{\phi_{n}\right\}_{n=1}^{\infty}$ of a Banach space X is called symmetric

provided each permutation $\left\{\phi_{\sigma(n)}\right\}_{n=1}^{\infty}$ of basis $\left\{\phi_{n}\right\}_{n=1}^{\infty}$ also forms a basis of X, isomorphic to $\left\{\phi_{n}\right\}_{n=1}^{\infty}$.

Example

- The canonical basis of ℓ_{p} and c_{0} space is symmetric.
- The class of symmetric bases in a Hilbert space coincides with the class of Riesz bases.
- The space $L_{p}(0,1), 1 \leq p \neq 2$, does not have a symmetric basis.

It is known that
space $\ell_{p}, 1 \leq p \leq \infty$, has unique, up to isomorphism, symmetric basis.

So we arrive at the following

Proposition

Let $\left\{\phi_{n}\right\}_{n=1}^{\infty}$ be a basis of $\ell_{p}, 1 \leq p<\infty$. Then $\left\{\phi_{n}\right\}_{n=1}^{\infty}$ forms a symmetric basis of ℓ_{p} if and only if there exists constants $M \geq m>0$ such that for each $x=\sum_{n=1}^{\infty} \alpha_{n} \phi_{n} \in \ell_{p}$ we have

$$
\begin{equation*}
m\|x\|^{p} \leq \sum_{n=1}^{\infty}\left|\alpha_{n}\right|^{p} \leq M\|x\|^{p} . \tag{8}
\end{equation*}
$$

This proposition is at the core of generalizations of our results to the case of Banach spaces of special structure.

Spaces $\ell_{p, k}\left(\left\{e_{n}\right\}\right), p \geq 1, k \in \mathbb{N}$

Choose the space ℓ_{p} and let $\left\{e_{n}\right\}_{1}^{\infty}$ be an arbitrary symmetric basis in $\ell_{p}, p \geq 1$. Then we define a Banach space $\ell_{p, k}\left(\left\{e_{n}\right\}\right), p \geq 1, k \in \mathbb{N}$, as

$$
\ell_{p, k}\left(\left\{e_{n}\right\}\right)=\left\{x=(\mathfrak{f}) \sum_{n=1}^{\infty} c_{n} e_{n}:\left\{c_{n}\right\}_{n=1}^{\infty} \in \ell_{p}\left(\Delta^{k}\right)\right\}, p \geq 1, k \in \mathbb{N},
$$

with $\left\|(\mathfrak{f}) \sum_{n=1}^{\infty} c_{n} e_{n}\right\|_{k}=\left\|\sum_{n=1}^{\infty}\left(\Delta^{k} c_{n}\right) e_{n}\right\|=\left\|\sum_{n=1}^{\infty} \sum_{j=0}^{k}(-1)^{j} C_{k}^{j} c_{n-j} e_{n}\right\|$.
Here $\ell_{p}\left(\Delta^{k}\right)=\left\{\alpha=\left\{\alpha_{n}\right\}_{n=1}^{\infty}: \Delta^{k} \alpha \in \ell_{p}\right\}$.

$$
\begin{aligned}
& \ell_{p, k}\left(\left\{e_{n}\right\}\right), p \geq 1, k \in \mathbb{N} \text {, is isomorphic to } \ell_{p} \text { and the following holds: } \\
& \ell_{p} \subset \ell_{p, 1}\left(\left\{e_{n}\right\}\right) \subset \ell_{p, 2}\left(\left\{e_{n}\right\}\right) \subset \ell_{p, 3}\left(\left\{e_{n}\right\}\right) \subset \ldots
\end{aligned}
$$

Proposition

(1) If $p>1$, then $\overline{\operatorname{Lin}}\left\{e_{n}\right\}_{n=1}^{\infty}=\ell_{p, k}\left(\left\{e_{n}\right\}\right)$;
(2. $\left\{e_{n}\right\}_{n=1}^{\infty}$ does not form a basis of $\ell_{p, k}\left(\left\{e_{n}\right\}\right)$;
(3) If $p>1$, then $\left\{e_{n}\right\}_{n=1}^{\infty}$ has a unique biorthogonal system

$$
\left\{\chi_{n}=(I-T)^{-k}\left(I-T^{*}\right)^{-k} e_{n}^{*}\right\}_{n=1}^{\infty}
$$

in $\left(\ell_{p, k}\left(\left\{e_{n}\right\}\right)\right)^{*}$, where $T e_{n}=e_{n+1}, n \in \mathbb{N}$, and $\left\{e_{n}^{*}\right\}_{n=1}^{\infty}$ is biorthogonal to $\left\{e_{n}\right\}_{n=1}^{\infty}$ basis of ℓ_{q}, where $\frac{1}{p}+\frac{1}{q}=1$;
(1) If $p>1$, then $\left\{\chi_{n}\right\}_{n=1}^{\infty}$ is uniformly minimal sequence in $\left(\ell_{p, k}\left(\left\{e_{n}\right\}\right)\right)^{*}$ while the sequence $\left\{e_{n}\right\}_{n=1}^{\infty}$ is minimal but not uniformly minimal in $\ell_{p, k}\left(\left\{e_{n}\right\}\right)$;
(6) $L=\left\{x=(\mathfrak{f}) \sum_{n=1}^{\infty} c_{n} e_{n} \in \ell_{p, k}\left(\left\{e_{n}\right\}\right):\left\{c_{n}\right\}_{n=1}^{\infty} \in \ell_{p}\left(\Delta^{k}\right) \cap c_{0}\right\}$ is not a (closed) subspace of $\ell_{p, k}\left(\left\{e_{n}\right\}\right)$.

Theorem

Let $\left\{e_{n}\right\}_{n=1}^{\infty}$ be a symmetric basis of $\ell_{p}, p>1$ and $k \in \mathbb{N}$. Then $\left\{e_{n}\right\}_{n=1}^{\infty}$ does not form a Schauder basis of $\ell_{p, k}\left(\left\{e_{n}\right\}\right)$ and the operator $A_{k}: \ell_{p, k}\left(\left\{e_{n}\right\}\right) \supset D\left(A_{k}\right) \mapsto \ell_{p, k}\left(\left\{e_{n}\right\}\right)$, defined by

$$
A_{k} x=A_{k}(\mathfrak{f}) \sum_{n=1}^{\infty} c_{n} e_{n}=(\mathfrak{f}) \sum_{n=1}^{\infty} i f(n) \cdot c_{n} e_{n}
$$

where $\{f(n)\}_{n=1}^{\infty} \in \mathcal{S}_{k}$, with domain

$$
D\left(A_{k}\right)=\left\{x=(\mathfrak{f}) \sum_{n=1}^{\infty} c_{n} e_{n} \in \ell_{p, k}\left(\left\{e_{n}\right\}\right):\left\{f(n) \cdot c_{n}\right\}_{n=1}^{\infty} \in \ell_{p}\left(\Delta^{k}\right)\right\}
$$

generates the C_{0}-group $\left\{e^{A_{k} t}\right\}_{t \in \mathbb{R}}$ on $\ell_{p, k}\left(\left\{e_{n}\right\}\right)$, which is given by

$$
\begin{equation*}
e^{A_{k} t} x=e^{A_{k} t}(\mathfrak{f}) \sum_{n=1}^{\infty} c_{n} e_{n}=(\mathfrak{f}) \sum_{n=1}^{\infty} e^{i t f(n)} c_{n} e_{n} \tag{9}
\end{equation*}
$$

Multiple application of the discrete Hardy inequality for $p>1$

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n} a_{k}\right)^{p} \leq\left(\frac{p}{p-1}\right)^{p} \sum_{n=1}^{\infty} a_{n}^{p}
$$

plays the key role in the proof of this theorem.

Remark

- The spectrum of A_{k} is $\sigma_{p}\left(A_{k}\right)=\{i f(n)\}_{1}^{\infty}=\left\{\lambda_{n}\right\}_{1}^{\infty} \subset i \mathbb{R}$, it satisfies

$$
\lim _{n \rightarrow \infty} i \lambda_{n}=-\infty, \quad \lim _{n \rightarrow \infty}\left|\lambda_{n+1}-\lambda_{n}\right|=0
$$

and the corresp. eigenvectors $\left\{e_{n}\right\}_{n=1}^{\infty}$ are dense and minimal, but do not form a Schauder basis.

- The resolvent of A_{k} is given by $\left(A_{k}-\lambda I\right)^{-1} x=(\mathfrak{f}) \sum_{n=1}^{\infty} \frac{c_{n} e_{n}}{i f(n)-\lambda}$,
$\lambda \in \rho\left(A_{k}\right)=\mathbb{C} \backslash\{\text { if }(n)\}_{1}^{\infty}$, where $x=(\mathfrak{f}) \sum_{n=1}^{\infty} c_{n} e_{n} \in \ell_{p, k}\left(\left\{e_{n}\right\}\right)$.

The proof of this theorem is similar to the proof of infinitesimality result in spaces $H_{k}\left(\left\{e_{n}\right\}\right), k \in \mathbb{N}$, and the ingredients are the same.

Corollary

For each $k \in \mathbb{N}$ the Cauchy problem

$$
\left\{\begin{array}{l}
\dot{x}(t)=A_{k} x(t), \quad t \in \mathbb{R}, \tag{10}\\
x(0)=x_{0},
\end{array}\right.
$$

with A_{k} from the above theorem is well-posed, and the solution is given by the formula (9), where $x=x_{0}$.

Proposition

The class of C_{0}-groups $\left\{e^{A_{k} t}\right\}_{t \in \mathbb{R}}$ from the above theorem also belongs to the class of polynomially bounded C_{0}-groups.

Proposition

Let $\left\{\lambda_{n}\right\}_{n=1}^{\infty} \subset i \mathbb{R}$ satisfy

$$
\lim _{n \rightarrow \infty} i \lambda_{n}=-\infty, \quad \lim _{n \rightarrow \infty}\left|\lambda_{n+1}-\lambda_{n}\right|=0
$$

and $\exists \alpha \in\left(0, \frac{1}{2}\right]: \liminf _{n \rightarrow \infty} n^{\alpha}\left|\lambda_{n}-\lambda_{n-1}\right|>0$. Then the operator A, defined
by $A x=A(\mathfrak{f}) \sum_{n=1}^{\infty} c_{n} e_{n}=(\mathfrak{f}) \sum_{n=1}^{\infty} \lambda_{n} c_{n} e_{n}$, with domain
$D(A)=\left\{x=(\mathfrak{f}) \sum_{n=1}^{\infty} c_{n} e_{n} \in H_{1}\left(\left\{e_{n}\right\}\right):\left\{\lambda_{n} c_{n}\right\}_{n=1}^{\infty} \in \ell_{2}(\Delta)\right\}$, does not generate the C_{0}-semigroup on the space $H_{1}\left(\left\{e_{n}\right\}\right)$.

Example

We can take $\lambda_{n}=i \sqrt{n}, n \in \mathbb{N}$.

Corollary

The Cauchy problem (1) with A from the proposition above is ill-posed on $H_{1}\left(\left\{e_{n}\right\}\right)$.

Open questions:

- Is it possible to construct the unbounded generator of the C_{0}-group with purely imaginary eigenvalues not satisfying (3) and family of eigenvectors, which form a bounded non-Riesz basis in a Hilbert space?
- What natural evolution phenomena are described by a such kind of evolution equations?
- What happens between $i \ln n$ and $i \sqrt{n}$ in our constructions in $H_{1}\left(\left\{e_{n}\right\}\right)$?
- How can the spectral theorem of G.Q. Xu \& S.P. Yung, and H. Zwart be generalized to the case of some kind of bases in Banach spaces, e.g. symmetric bases?

Thanks for the attention!

