Symmetric α-stable distributions for noninteger $\alpha>2$ and associated stochastic processes.

M.V.Platonova

St. Petersburg State University, Chebyshev laboratory.
Mainz, 04.09.2016-15.09.2016

Introduction

We consider evolution equations

$$
\begin{align*}
& \frac{\partial u}{\partial t}=c_{\alpha} \mathcal{D}_{+}^{\alpha} u \tag{1}\\
& \frac{\partial u}{\partial t}=c_{\alpha} \mathcal{D}_{-}^{\alpha} u \tag{2}
\end{align*}
$$

where $c_{\alpha}=(-1)^{\left[\frac{\alpha}{2}\right]} \Gamma(-\alpha)$ and $\mathcal{D}_{ \pm}^{\alpha}$ are fractional derivative operators of the order $\alpha>0$, defined by

$$
\left(\mathcal{D}_{ \pm}^{\alpha} f\right)(x)=\frac{1}{\Gamma(-\alpha)} \int_{0}^{\infty} \frac{f(x \mp t)-\sum_{k=0}^{[\alpha]} \frac{f^{(k)}(x)}{k!}(\mp t)^{k}}{t^{1+\alpha}} d t
$$

We also consider an evolution equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=c_{\alpha} \mathcal{D}^{\alpha} u, \alpha \notin \mathbb{N} \tag{3}
\end{equation*}
$$

where \mathcal{D}^{α} is a symmetric fractional derivative operator of the order $\alpha>0$, defined by

$$
\mathcal{D}^{\alpha}=\mathcal{D}_{+}^{\alpha}+\mathcal{D}_{-}^{\alpha}
$$

and therefore

$$
\left(\mathcal{D}^{\alpha} f\right)(x)=\frac{1}{\Gamma(-\alpha)} \int_{-\infty}^{+\infty} \frac{f(x-t)-\sum_{k=0}^{\left[\frac{\alpha}{2}\right]} \frac{f^{(2 k)}(x)}{2 k!} t^{2 k}}{|t|^{1+\alpha}} d t
$$

For (1), (2) and (3) we consider the Cauchy problem

$$
\begin{equation*}
u(0, x)=\varphi(x) \tag{4}
\end{equation*}
$$

where $\varphi \in L_{2}(\mathbb{R})$.

The case $\alpha \in(0,1) \cup(1,2)$

If $\alpha \in(0,1) \cup(1,2)$, then the solutions (1), (4) and (2), (4) can be represented in the forms

$$
\begin{equation*}
u(t, x)=\mathbf{E} \varphi\left(x-\xi_{\alpha}^{+}(t)\right), u(t, x)=\mathbf{E} \varphi\left(x-\xi_{\alpha}^{-}(t)\right) \tag{5}
\end{equation*}
$$

where $\xi_{\alpha}^{ \pm}(t)$ are the Lévy processes with the Lévy measure $\Lambda^{ \pm}(d x)=\frac{C_{\alpha} d x}{|x|^{1+\alpha}} \mathbf{1}_{\mathbb{R}_{ \pm}}(x)$.
The solution (3), (4) can be represented in the form

$$
\begin{equation*}
u(t, x)=\mathbf{E} \varphi\left(x-\xi_{\alpha}(t)\right) \tag{6}
\end{equation*}
$$

where $\xi_{\alpha}(t)$ is the symmetric stable Lévy process with the Lévy measure $\Lambda(d x)=\frac{C_{\alpha} d x}{|x|^{1+\alpha}}$.
For $\alpha>2$ the solutions can not be represented in this form because the fundamental solutions of (1), (2) and (3) are not probability densities.
Previous results.
E. Orsingher, B. Toaldo, 2014 - theory of pseudo-processes.
N.Smorodina, M.Faddeev, 2010 - generalized function theory.

Namely, the symmetric stable distribution with $\alpha>2$ was defined as a generalized function / that acts on a test function φ as

$$
\begin{equation*}
(I, \varphi)=\lim _{\varepsilon \rightarrow 0} \mathbf{E} \varphi * \omega_{\varepsilon}\left(\eta_{\varepsilon}\right) \tag{7}
\end{equation*}
$$

where ω_{ε} is a special family of rapidly oscillating functions, $\eta_{\varepsilon}=\int_{|x|>\varepsilon} x d \mu$, and μ is a Poisson random measure on \mathbb{R} with intensity measure $\frac{C_{\alpha} d x}{|x|^{1+\alpha}}$. If $\alpha \in(0,2)$, then in (7) for every ε the function ω_{ε} is δ-function and in this case the generalized function I is a regular functional of the form

$$
(I, \varphi)=\int_{-\infty}^{\infty} \varphi(x) p_{\alpha}(x) d x
$$

where $p_{\alpha}(x)$ is a density of the symmetric stable distribution with index α. For $\alpha>2$ the generalized function / is a regular functional, but corresponding density is the function with alternating signs.

Note, that this method works well only if $\alpha \in \bigcup_{m=1}^{\infty}(4 m, 4 m+2)$, in this case the Fourier transform $g_{\alpha}(p)$ of the stable distribution (defined by (7)) has the "right" form (as for $\alpha \in(0,2)$), namely

$$
g_{\alpha}(p)=\exp \left(-c|p|^{\alpha}\right)
$$

where c is a positive constant.
For $\alpha \in \bigcup_{m=1}^{\infty}(4 m-2,4 m)$ the method of Smorodina, Faddeev gives us not so "natural" result, namely

$$
g_{\alpha}(p)=\exp \left(c_{0}|p|^{\alpha}-c_{1} p^{4 m}\right)
$$

For $\alpha \in \bigcup_{m=1}^{\infty}(4 m, 4 m+2)$ we also used the methods of Smorodina,
Faddeev only, but in the case $\alpha \in \bigcup_{m=1}^{\infty}(4 m-2,4 m)$ we suggest a new method based on the theory of Hardy classes. In fact, instead of one real-valued process we consider two complex-valued processes (in the nonsymmetric case) and four complex-valued processes (in the symmetric case). Note that this method provides us the "right" view of the Fourier transform

$$
g_{\alpha}(p)=\exp \left(-c(p)|p|^{\alpha}\right)
$$

for any α, where $\mathrm{c}(\mathrm{p})$ depends on $\operatorname{sign}(p)$ in the nonsymmetric case and does not depend on p in the symmetric case.

Let $\nu(d x, d t)$ be a Poisson random measure on $\mathbb{R} \times[0, T]$ with intensity measure $\mathbf{E} \nu(d x, d t)=\Lambda(d x) \cdot d t=\frac{d x \cdot d t}{|x|^{+1+\alpha}}, \alpha>2$ and $\alpha \notin \mathbb{N}$.
Denote $\mathbb{R}_{\varepsilon}=\mathbb{R} \backslash(-\varepsilon, \varepsilon)$.
For $\varepsilon>0$ by $\xi_{\varepsilon}^{+}(t)$ we denote the random process

$$
\begin{equation*}
\xi_{\varepsilon}^{+}(t)=\iint_{[0, t] \times(\varepsilon,+\infty)} x \nu(d x, d t) \tag{8}
\end{equation*}
$$

and by $\xi_{\varepsilon}(t)$ we denote the random process

$$
\begin{equation*}
\xi_{\varepsilon}(t)=\iint_{[0, t] \times \mathbb{R}_{\varepsilon}} x \nu(d x, d t) \tag{9}
\end{equation*}
$$

The characteristic function of $\xi_{\varepsilon}^{+}(t)$ is

$$
f_{\xi_{\varepsilon}^{+}(t)}(p)=\exp \left(t \int_{\varepsilon}^{+\infty}\left(e^{i p x}-1\right) \Lambda(d x)\right)
$$

The characteristic function of $\xi_{\varepsilon}(t)$ is

$$
f_{\xi_{\varepsilon}(t)}(p)=\exp \left(t \int_{\mathbb{R}_{\varepsilon}}\left(e^{i p x}-1\right) \wedge(d x)\right)
$$

For the case $\alpha \in \bigcup_{m=1}^{\infty}(4 m, 4 m+1) \cup(4 m+1,4 m+2)$ and $\alpha \in \bigcup_{m=1}^{\infty}(4 m-2,4 m-1) \cup(4 m-1,4 m)$ we use different approaches. Consider the first case.

The case $\alpha \in \underset{m=1}{\cup}(4 m, 4 m+1) \cup(4 m+1,4 m+2)$

Firstly, we consider the nonsymmetric case.
For $\varepsilon>0$ define a function $u_{\varepsilon}(t, x)$ by

$$
u_{\varepsilon}(t, x)=\mathbf{E}\left[\left(\varphi * \omega_{\varepsilon}^{t}\right)\left(x-\xi_{\varepsilon}^{+}(t)\right)\right]
$$

where

$$
\begin{equation*}
\widehat{\omega}_{\varepsilon}^{t}(p)=\exp \left(-t \int_{\varepsilon}^{+\infty}\left(\sum_{k=1}^{[\alpha]} \frac{i^{k} p^{k} x^{k}}{k!}\right) \frac{d x}{x^{1+\alpha}}\right) \tag{10}
\end{equation*}
$$

Theorem

Suppose that $\varphi \in W_{2}^{I+[\alpha]+1}(\mathbb{R}), I \geqslant 0$ and let $u(t, x)$ be a solution of the Cauchy problem (1), (4). Then there exists $C=C(\alpha)>0$, such that

$$
\sup _{t \in[0, T]}\left\|u_{\varepsilon}(t, \cdot)-u(t, \cdot)\right\|_{W_{2}^{\prime}(\mathbb{R})} \leqslant C T\|\varphi\|_{W_{2}^{\prime+[\alpha]+1}(\mathbb{R})} \varepsilon^{1-\{\alpha\}}
$$

The case $\alpha \in \bigcup_{m=1}^{\cup}(4 m, 4 m+1) \cup(4 m+1,4 m+2)$

Now we consider the symmetric case. For $\varepsilon>0$ define a function $u_{\varepsilon}(t, x)$ by

$$
u_{\varepsilon}(t, x)=\mathbf{E}\left[\left(\varphi * \omega_{\varepsilon}^{t}\right)\left(x-\xi_{\varepsilon}(t)\right)\right],
$$

where

$$
\begin{equation*}
\widehat{\omega}_{\varepsilon}^{t}(p)=\exp \left(-t \int_{\mathbb{R}_{\varepsilon}}\left(\sum_{k=1}^{2 m} \frac{i^{2 k} p^{2 k} x^{2 k}}{(2 k)!}\right) \frac{d x}{|x|^{1+\alpha}}\right) \tag{11}
\end{equation*}
$$

Theorem

Suppose that $\varphi \in W_{2}^{I+4 m+2}(\mathbb{R}), I \geqslant 0$ and let $u(t, x)$ be a solution of the Cauchy problem (3), (4). Then there exists $C=C(\alpha)>0$, such that

$$
\sup _{t \in[0, T]}\left\|u_{\varepsilon}(t, \cdot)-u(t, \cdot)\right\|_{W_{2}^{\prime}(\mathbb{R})} \leqslant C T\|\varphi\|_{W_{2}^{I+4 m+2}(\mathbb{R})} \varepsilon^{4 m+2-\alpha} .
$$

For $M>0$ by P_{M} denote the projector in $L_{2}(\mathbb{R})$ on the subspace of the functions ψ, such that $\operatorname{supp} \widehat{\psi} \subset[-M, M]$. Namely, for $\psi \in L_{2}(\mathbb{R})$ set

$$
\mathrm{P}_{M} \psi=\psi * D_{M}
$$

where D_{M} is the Dirichlet kernel

$$
D_{M}(x)=\frac{1}{\pi} \frac{\sin M x}{x}
$$

The Fourier transform $\widehat{\mathrm{P}}_{M}$ of the operator P_{M} is a multiplication operator of the form

$$
\widehat{\mathrm{P}}_{M} \widehat{\psi}=\widehat{\psi} \cdot \widehat{D}_{M}
$$

where $\widehat{D}_{M}(p)=\mathbf{1}_{[-M, M]}(p)$.
We use the notation $\psi_{M}(x)$ for $P_{M} \psi(x)$.

Denote $\mathbb{R}_{\varepsilon}^{+}=(\varepsilon,+\infty)$ and $\mathbb{R}_{\varepsilon}^{-}=(-\infty,-\varepsilon)$.
As above for $\varepsilon>0$ we define random processes $\xi_{\varepsilon}^{ \pm}(t)$ by $\xi_{\varepsilon}^{ \pm}(t)=\iint x \nu(d x, d t)$. But now we consider the $[0, t] \times \mathbb{R}_{\varepsilon}^{ \pm}$
complex-valued processes $\sigma \xi_{\varepsilon}^{ \pm}(t)$, where σ is a complex constant. For $\xi_{\varepsilon}^{+}(t)$ we have

$$
\mathbf{E} \exp \left(i p \sigma \xi_{\varepsilon}^{+}(t)\right)=\exp \left(t \int_{\varepsilon}^{+\infty}\left(e^{i \sigma p x}-1\right) \Lambda(d x)\right)
$$

This integral converges if $p \geqslant 0$ and $\operatorname{Im} \sigma \geqslant 0$ or if $p \leqslant 0$ and $\operatorname{Im} \sigma \leqslant 0$.

For $\xi_{\varepsilon}^{-}(t)$ we have

$$
\mathbf{E} \exp \left(i p \sigma \xi_{\varepsilon}^{-}(t)\right)=\exp \left(t \int_{-\infty}^{-\varepsilon}\left(e^{i \sigma p x}-1\right) \Lambda(d x)\right)
$$

This integral converges if $p \geqslant 0$ and $\operatorname{Im} \sigma \leqslant 0$ or if $p \leqslant 0$ and $\operatorname{Im} \sigma \geqslant 0$.
By P_{+}we denote the Riesz projector. This projector acts from $L_{2}(\mathbb{R})$ to Hardy space $H_{+}^{2}(\{\operatorname{Imz}>0\})$. Analogously, the projector P_{-}acts from $L_{2}(\mathbb{R})$ to Hardy space $H_{-}^{2}(\{\operatorname{Imz}<0\})$. So that for every $\varphi \in L_{2}(\mathbb{R})$ we have

$$
\varphi=\varphi_{+}+\varphi_{-}=P_{+} \varphi+P_{-} \varphi
$$

Set $\sigma_{+}=\exp \left(\frac{i \pi}{\alpha}\right)$ and $\sigma_{-}=\exp \left(-\frac{i \pi}{\alpha}\right)$. Note that σ_{+}belongs to the upper half-plane and σ_{-}belongs to the lower half-plane and

$$
\sigma_{ \pm}^{\alpha}=-1
$$

Now we consider the nonsymmetric case.
For $\varepsilon>0$ define a function $u_{\varepsilon}(t, x)$ by
$u_{\varepsilon}(t, x)=\mathbf{E}\left[\left(\varphi_{M}^{-} * \omega_{\varepsilon}^{t}\right)\left(x-\sigma_{+} \xi_{\varepsilon}^{+}(t)\right)+\left(\varphi_{M}^{+} * \omega_{\varepsilon}^{t}\right)\left(x-\sigma_{-} \xi_{\varepsilon}^{+}(t)\right)\right]$,
where

$$
\widehat{\omega}_{\varepsilon}^{t}(p)= \begin{cases}\exp \left(-t \int_{\varepsilon}^{+\infty}\left(\sum_{k=1}^{[\alpha]} \frac{i^{k} \sigma_{+}^{k} p^{k} x^{k}}{k!}\right) \frac{d x}{x^{1+\alpha}}\right), & p \geqslant 0, \tag{12}\\ \exp \left(-t \int_{\varepsilon}^{+\infty}\left(\sum_{k=1}^{[\alpha]} \frac{i^{k} \sigma_{-}^{k} p^{k} x^{k}}{k!}\right) \frac{d x}{x^{1+\alpha}}\right), & p<0 .\end{cases}
$$

Theorem

Suppose that $\varphi \in W_{2}^{I+[\alpha]+1}(\mathbb{R}), I \geqslant 0$ and $M(\varepsilon)=\frac{1}{\varepsilon}$. Let $u(t, x)$ be a solution of the Cauchy problem (1), (4). Then there exists $C=C(\alpha)>0$, such that

$$
\sup _{t \in[0, T]}\left\|u_{\varepsilon}(t, \cdot)-u(t, \cdot)\right\|_{W_{2}^{\prime}(\mathbb{R})} \leqslant C\left(T+\varepsilon^{\alpha}\right)\|\varphi\|_{W_{2}^{\prime+[\alpha]+1}(\mathbb{R})} \varepsilon^{1-\{\alpha\}} .
$$

The case $\alpha \in \bigcup_{m=1}^{\cup}(4 m-2,4 m-1) \cup(4 m-1,4 m)$
In the symmetric case for $\varepsilon>0$ we define a function $u_{\varepsilon}(t, x)$ by

$$
\begin{aligned}
u_{\varepsilon}(t, x)=\mathbf{E}\left[\left(\varphi_{M}^{-} * \omega_{\varepsilon}^{t}\right)\right. & \left(x-\sigma_{+} \xi_{\varepsilon}^{+}(t)-\sigma_{-} \xi_{\varepsilon}^{-}(t)\right) \\
& \left.+\left(\varphi_{M}^{+} * \omega_{\varepsilon}^{t}\right)\left(x-\sigma_{-} \xi_{\varepsilon}^{+}(t)-\sigma_{+} \xi_{\varepsilon}^{-}(t)\right)\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& \widehat{\omega}_{\varepsilon}^{t}(p) \\
& =\left\{\begin{array}{r}
\exp \left(-t \int_{\varepsilon}^{+\infty}\left(\sum_{k=1}^{[\alpha]} \frac{\left(i \sigma_{+} p x\right)^{k}}{k!}\right) \frac{d x}{x^{1+\alpha}}\right) \exp \left(-t \int_{-\infty}^{-\varepsilon}\left(\sum_{k=1}^{[\alpha]} \frac{\left(i \sigma_{-} p x\right)^{k}}{k!}\right) \frac{d x}{|x|^{1+\alpha}}\right), \\
\text { if } p \geqslant 0, \\
\exp \left(-t \int_{\varepsilon}^{+\infty}\left(\sum_{k=1}^{[\alpha]} \frac{\left(i \sigma_{-} p x\right)^{k}}{k!}\right) \frac{d x}{x^{1+\alpha}}\right) \exp \left(-t \int_{-\infty}^{-\varepsilon}\left(\sum_{k=1}^{[\alpha]} \frac{\left(i \sigma_{+} p x\right)^{k}}{k!}\right) \frac{d x}{|x|^{1+\alpha}}\right), \\
\text { if } p<0 .
\end{array}\right.
\end{aligned}
$$

Theorem

Suppose that $\varphi \in W_{2}^{I+[\alpha]+1}(\mathbb{R}), I \geqslant 0$ and $M(\varepsilon)=\varepsilon^{-1}$. Let $u(t, x)$ be a solution of the Cauchy problem (3), (4). Then there exists $C=C(\alpha)>0$, such that

$$
\sup _{t \in[0, T]}\left\|u_{\varepsilon}(t, \cdot)-u(t, \cdot)\right\|_{W_{2}^{\prime}(\mathbb{R})} \leqslant C\left(T+\varepsilon^{\alpha}\right)\|\varphi\|_{W_{2}^{I+[\alpha]+1}(\mathbb{R})} \varepsilon^{1-\{\alpha\}}
$$

Thus we get a probability representation of the Cauchy problem solution (1), (4) defined by
$u(t, x)=\lim _{\varepsilon \rightarrow 0} \mathbf{E}\left[\left(\varphi_{M}^{-} * \omega_{\varepsilon}^{t}\right)\left(x-\sigma_{+} \xi_{\varepsilon}^{+}(t)\right)+\left(\varphi_{M}^{+} * \omega_{\varepsilon}^{t}\right)\left(x-\sigma_{-} \xi_{\varepsilon}^{+}(t)\right)\right]$
and a probability representation of the Cauchy problem solution (3), (4) defined by

$$
\left.\left.\left.\begin{array}{rl}
u(t, x)= & \lim _{\varepsilon \rightarrow 0} \mathbf{E}\left[\left(\varphi_{M}^{+}\right.\right.
\end{array}\right) \omega_{\varepsilon}^{t}\right)\left(x-\sigma_{-} \xi_{\varepsilon}^{+}(t)-\sigma_{+} \xi_{\varepsilon}^{-}(t)\right), ~\left(x-\sigma_{+} \xi_{\varepsilon}^{+}(t)-\sigma_{-} \xi_{\varepsilon}^{-}(t)\right)\right] .
$$

Limit theorems

Let $\left\{\xi_{j}^{+}\right\}_{j=1}^{\infty}$ be a sequence of i.i.d. nonnegative random variables and $\left\{\xi_{j}^{-}\right\}_{j=1}^{\infty}$ be a sequence of i.i.d. nonpositive random variables. Suppose that the distributions $\mathcal{P}^{ \pm}$of $\xi_{1}^{ \pm}$for $|x|>1$ satisfy the conditions

$$
\begin{equation*}
P\left(\xi_{1}^{ \pm}>|x|\right)=\frac{1}{\alpha|x|^{\alpha}}\left(1+h^{ \pm}(x)\right), \tag{13}
\end{equation*}
$$

where $\left|h^{ \pm}(x)\right| \leqslant \frac{C}{|x|^{\beta}}$, and $\beta>1-\{\alpha\}$.
For $k<\alpha$ by $\mu_{k}^{ \pm}=\mathbf{E}\left(\xi_{1}^{ \pm}\right)^{k}$ we denote the moment of the order k. Let $\eta(t), t \in[0, \infty)$ be a standard Poisson process independent of $\left\{\xi_{j}^{ \pm}\right\}$.
Define random processes $\zeta_{n}^{ \pm}(t), t \in[0, T]$, by

$$
\begin{equation*}
\zeta_{n}^{ \pm}(t)=\frac{1}{n^{1 / \alpha}} \sum_{j=1}^{\eta(n t)} \xi_{j}^{ \pm} \tag{14}
\end{equation*}
$$

The case $\alpha \in \bigcup_{m=1}^{\cup}(4 m, 4 m+1) \cup(4 m+1,4 m+2)$

In the nonsymmetric case for $n \in \mathbb{N}$ define a function

$$
u_{n}(t, x)=\mathbf{E}\left[\left(\varphi_{M} * \varkappa_{n}^{t}\right)\left(x-\zeta_{n}^{+}(t)\right)\right],
$$

where

$$
\widehat{\varkappa}_{n}^{t}(p)=\exp \left(-n t\left(\frac{\mu_{1}^{+} i p}{n^{1 / \alpha}}+\frac{\mu_{2}^{+}(i p)^{2}}{2 n^{2 / \alpha}}+\cdots+\frac{\mu_{[\alpha]}^{+}(i p)^{[\alpha]}}{[\alpha]!n^{[\alpha] / \alpha}}\right)\right) .
$$

We choose $M=M(n)$.

Theorem

Suppose that $\varphi \in W_{2}^{I+[\alpha]+1}(\mathbb{R}), I \geqslant 0, M(n)=n^{1 / \alpha}$ and let $u(t, x)$ be a solution of the Cauchy problem (1), (4). Then there exists $C=C(\alpha)>0$, such that

$$
\sup _{t \in[0, T]}\left\|u_{n}(t, \cdot)-u(t, \cdot)\right\|_{W_{2}^{\prime}(\mathbb{R})} \leqslant C\left(T+\frac{1}{n}\right) \frac{\|\varphi\|_{W_{2}^{\prime+[\alpha]+1}(\mathbb{R})}}{n^{(1-\{\alpha\}) / \alpha}}
$$

The case $\alpha \in \bigcup_{m=1}^{\cup}(4 m, 4 m+1) \cup(4 m+1,4 m+2)$
Now we consider the symmetric case. Let $\left\{\xi_{j}\right\}_{j=1}^{\infty}$ be a sequence of i.i.d. symmetric random variables. Suppose that the distribution \mathcal{P} of ξ_{1} for $x>1$ satisfies the condition

$$
\begin{equation*}
P\left(\xi_{1}>x\right)=\frac{1}{\alpha|x|^{\alpha}}(1+h(x)), \tag{15}
\end{equation*}
$$

where $|h(x)| \leqslant \frac{C}{|x|^{3}}$, and $\beta>4 m+2-\alpha$.
For $k<\alpha$ by $\mu_{k}=\mathbf{E} \xi_{1}^{k}$ we denote the moment of the order k. Let $\eta(t), t \in[0, \infty)$ be a standard Poisson process independent of $\left\{\xi_{j}\right\}$.
Define a random process $\zeta_{n}(t), t \in[0, T]$, by

$$
\begin{equation*}
\zeta_{n}(t)=\frac{1}{n^{1 / \alpha}} \sum_{j=1}^{\eta(n t)} \xi_{j} \tag{16}
\end{equation*}
$$

The case $\alpha \in \bigcup_{m=1}^{\cup}(4 m, 4 m+1) \cup(4 m+1,4 m+2)$

For $n \in \mathbb{N}$ define a function

$$
u_{n}(t, x)=\mathbf{E}\left[\left(\varphi_{M} * \varkappa_{n}^{t}\right)\left(x-\zeta_{n}(t)\right)\right],
$$

where

$$
\hat{\varkappa}_{n}^{t}(p)=\exp \left(-n t\left(\frac{\mu_{2}(i p)^{2}}{2 n^{2 / \alpha}}+\cdots+\frac{\mu_{4 m}(i p)^{4 m}}{(4 m)!n^{4 m / \alpha}}\right)\right) .
$$

We choose $M=M(n)$.

Theorem

Suppose that $\varphi \in W_{2}^{I+4 m+2}(\mathbb{R}), I \geqslant 0, M(n)=n^{1 / \alpha}$ and let $u(t, x)$ be a solution of the Cauchy problem (3), (4). Then there exists $C=C(\alpha)>0$, such that

$$
\sup _{t \in[0, T]}\left\|u_{n}(t, \cdot)-u(t, \cdot)\right\|_{W_{2}^{\prime}(\mathbb{R})} \leqslant C\left(T+\frac{1}{n}\right) \frac{\|\varphi\|_{W_{2}^{\prime+4 m+2}(\mathbb{R})}}{n^{(4 m+2-\alpha) / \alpha}}
$$

The case $\alpha \in \bigcup_{m=1}^{\cup}(4 m-2,4 m-1) \cup(4 m-1,4 m)$

In the nonsymmetric case for $n \in \mathbb{N}$ define a function $u_{n}(t, x)$
$u_{n}(t, x)=\mathbf{E}\left[\left(\varphi_{M}^{-} * \varkappa_{n}^{t}\right)\left(x-\sigma_{+} \zeta_{n}^{+}(t)\right)+\left(\varphi_{M}^{+} * \varkappa_{n}^{t}\right)\left(x-\sigma_{-} \zeta_{n}^{+}(t)\right)\right]$,
where

$$
\hat{\varkappa}_{n}^{t}(p)= \begin{cases}\exp \left(-n t\left(\frac{\mu_{1}^{+} i p \sigma_{+}}{n^{1 / \alpha}}+\cdots+\frac{\mu_{[\alpha]}^{+}\left(i p \sigma_{+}\right)^{[\alpha]}}{[\alpha]!n^{[\alpha] / \alpha}}\right)\right), & p \geqslant 0, \\ \exp \left(-n t\left(\frac{\mu_{1}^{+i p \sigma_{-}}}{n^{1 / \alpha}}+\cdots+\frac{\mu_{[\alpha]}^{+}\left(i p \sigma_{-}\right)^{[\alpha]}}{[\alpha]!n^{[\alpha] / \alpha}}\right)\right), & p<0 .\end{cases}
$$

Theorem

Suppose that $\varphi \in W_{2}^{I+[\alpha]+1}(\mathbb{R}), I \geqslant 0, M(n)=n^{1 / \alpha}$ and let $u(t, x)$ be a solution of the Cauchy problem (1), (4). Then there exists $C=C(\alpha)>0$, such that

$$
\sup _{t \in[0, T]}\left\|u_{n}(t, \cdot)-u(t, \cdot)\right\|_{W_{2}^{\prime}(\mathbb{R})} \leqslant C\left(T+\frac{1}{n}\right) \frac{\|\varphi\|_{W_{2}^{l+[\alpha]+1}(\mathbb{R})}}{n^{(1-\{\alpha\}) / \alpha}}
$$

The case $\alpha \in \bigcup_{m=1}^{\cup}(4 m-2,4 m-1) \cup(4 m-1,4 m)$
In the symmetric case for $n \in \mathbb{N}$ define a function $u_{n}(t, x)$

$$
\begin{aligned}
u_{n}(t, x)=\mathbf{E}\left[\left(\varphi_{M}^{-} * \varkappa_{n}^{t}\right)\right. & \left(x-\sigma_{+} \zeta_{n}^{+}(t)-\sigma_{-} \zeta_{n}^{-}(t)\right) \\
+ & \left.\left(\varphi_{M}^{+} * \varkappa_{n}^{t}\right)\left(x-\sigma_{-} \zeta_{n}^{+}(t)-\sigma_{+} \zeta_{n}^{-}(t)\right)\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& \hat{\varkappa}_{n}^{t}(p) \\
& \quad=\left\{\begin{array}{l}
\exp \left(-n t\left(\sum_{k=1}^{[\alpha]} \frac{\mu_{k}^{+}\left(i \sigma_{+}+\right)^{k}}{k!}\right)\right) \exp \left(-n t\left(\sum_{k=1}^{[\alpha]} \frac{\mu_{k}^{-}\left(i \sigma_{-}-p\right)^{k}}{k!}\right)\right), \\
\text { if } p \geqslant 0, \\
\exp \left(-n t\left(\sum_{k=1}^{[\alpha]} \frac{\mu_{k}^{+}(i \sigma-p)^{k}}{k!}\right)\right) \exp \left(-n t\left(\sum_{k=1}^{[\alpha]} \frac{\mu_{k}^{-}\left(i \sigma_{+} p\right)^{k}}{k!}\right)\right), \\
\text { if } p<0 .
\end{array}\right.
\end{aligned}
$$

Theorem

Suppose that $\varphi \in W_{2}^{I+[\alpha]+1}(\mathbb{R}), I \geqslant 0, M(n)=n^{1 / \alpha}$ and let $u(t, x)$ be a solution of the Cauchy problem (3), (4). Then there exists $C=C(\alpha)>0$, such that

$$
\sup _{t \in[0, T]}\left\|u_{n}(t, \cdot)-u(t, \cdot)\right\|_{W_{2}^{\prime}(\mathbb{R})} \leqslant C\left(T+\frac{1}{n}\right) \frac{\|\varphi\|_{W_{2}^{\prime+[\alpha]+1}(\mathbb{R})}}{n^{(1-\{\alpha\}) / \alpha}} .
$$

目 M．V．Platonova：Symmetric α－stable distributions for noninteger $\alpha>2$ and associated stochastic processes．Zapiski Nauchnykh Seminarov POMI 442，101－117，St．Petersburg Department of Steklov Institute of Mathematics，Russian Academy of Sciences， 2015 （in Russian）．

國 A．Lachal：From pseudo－random walk to pseudo－Brownian motion：first exit time from a one－sided or a two－sided interval． ArXiv：1301．6579．
E．Orsingher，B．Toaldo：Pseudoprocesses related to space－fractional higher－order heat－type equations．Stochast． Anal．Appl．32，No． 4 （2014），619－641．
围 Smorodina N．V．，Faddeev M．M．：The Lévy－Khinchin representation of the one class of signed stable measures and some its applications．Acta Appl．Math．110，1289－1308， 2010.

