The Maxwell system in waveguides with non-homogeneous anisotropic filling

Aleksandr Poretskii St. Petersburg State University the talk is based on a joint research with B.A. Plamenevskii

Spectral Theory, Differential Equations and Probability September 9, 2016

EM waveguides. State of the art

An actual problem is to extend the class of electromagnetic waveguides admitting a mathematically accurate investigation: geometry and filling medium.

The Maxwell system

• The stationary Maxwell system

$$i\varepsilon(x)^{-1}\operatorname{rot} u^{2}(x) - ku^{1}(x) = f(x), \quad -i\operatorname{div}(\mu(x)u^{2}(x)) = 0,$$

$$-i\mu(x)^{-1}\operatorname{rot} u^{1}(x) - ku^{2}(x) = 0, \quad i\operatorname{div}(\varepsilon(x)u^{1}(x)) = h(x).$$
(1)

Boundary conditions

$$u_{\tau}^{1}(x) = 0, \ (\mu u^{2})_{\nu}(x) = 0.$$
 (2)

 u^1 and u^2 are electric and magnetic vectors; ε and μ are dielectric and magnetic permittivity matrices.

• The system (1) is over-determined. Compatibility condition (charge conservation law)

$$\operatorname{div}\left(\varepsilon(x)f(x)\right) - ikh(x) = 0. \tag{3}$$

Elliptization

• Augmented Maxwell system, [O'56],[GK'74], [P'84], [BS'90]. $i\varepsilon^{-1}\operatorname{rot} u^2 + i\nabla a^2 - ku^1 = f^1, -i\operatorname{div}(\mu u^2) - ka^1 = h^1,$ $-i\mu^{-1}\operatorname{rot} u^1 - i\nabla a^1 - ku^2 = f^2, \quad i\operatorname{div}(\varepsilon u^1) - ka^2 = h^2$ (4)

with boundary conditions

$$-u_{\tau_2}^1 = g^1, \quad u_{\tau_1}^1 = g^2, \quad (\mu u^2)_{\nu} = g^3, \quad a^2 = g^4 \tag{5}$$

is elliptic and self-adjoint with respect to a Green formula.

- Theory of self-adjoint problems for elliptic systems in domains with several cylindrical ends. Such a theory was (firstly) developed in [NP'91].
- "Return" to the original Maxwell system.

For empty waveguide ($\varepsilon = \mu = I$) with several cylindrical ends the plan was implemented in [PP'14].

Waveguide

 $G \subset \mathbb{R}^3$, coinciding outside a large ball with the union of non-overlapping semicylinders $G \cap \Pi^q_+ = \{(y^q, z^q) : y^q \in \Omega^q, z^q > 0\},\ q = 1, \ldots, \mathcal{T} < \infty.$

Permittivity matrices ε and μ

• Dielectric and magnetic permittivity

 $\overline{G} \ni x \mapsto \varepsilon(x), \ \mu(x)$

are **positive-definite** 3×3 **matrix** valued smooth **functions**.

 In every cylindrical end G ∩ Π^q₊ = {(y^q, z^q) : y^q ∈ Ω^q, z^q > 0} the matrices ε(y^q, z^q) and μ(y^q, z^q) converge as z^q → +∞ to positive-definite 3 × 3 matrix valued smooth functions

 $\overline{\Omega^q} \ni y^q \mapsto \varepsilon^q(y^q), \ \mu^q(y^q).$

• Exponential convergence rate. For a $\delta > 0$ the estimates

 $\begin{aligned} |\varepsilon(y^q, z^q) - \varepsilon^q(y^q)| + |\nabla(\varepsilon(y^q, z^q) - \varepsilon^q(y^q))| &= O(\exp(-\delta z^q)), \\ |\mu(y^q, z^q) - \mu^q(y^q)| + |\nabla(\mu(y^q, z^q) - \mu^q(y^q))| &= O(\exp(-\delta z^q)), \end{aligned}$

hold as $z^q \to +\infty$, uniformly with respect to $y^q \in \overline{\Omega^q}$.

• No other restrictions are imposed on the matrices ε and μ .

Continuous and point spectrum

- A solution U to the homogeneous problem (1), (2): U(x) ≤ Const (|x| + 1)^N, U ∉ L₂(G) is by definition a continuous spectrum eigenfunction (CSE). The number k belongs to the continuous spectrum of the problem (1), (2). Denote by E_c(k) the linear hull of CSEs.
- A solution U ∈ L₂(G) to the homogeneous problem (1), (2) is by definition an eigenfunction. The corresponding number k is an eigenvalue. Denote by E_p(k) the eigenspace. The eigenvalues are isolated and have finite multiplicities. The set of eigenvalues is called the point spectrum.
- To introduce the scattering matrix we are to choose a basis in the space $E_c(k)$ with elements, having a specific asymptotics.
- Such an asymptotics is described in terms of incoming and outgoing waves.

Incoming and outgoing waves

- Consider the model problem of the form (1), (2) in a cylinder $\Pi^q = \Omega^q \times \mathbb{R}$ with matrices $\varepsilon^q(y^q)$ and $\mu^q(y^q)$.
- Waves are solutions to the model problem of the form

$$\exp(i\lambda z^q) \sum_{r=0}^{\varkappa-1} (iz^q)^r \varphi^{(\varkappa-1-r)}(y^q), \tag{6}$$

with a real λ and $\varkappa \geq 1$. A solution (6) with $\varkappa > 1$ may exist only for isolated "threshold" values of k.

Proposition 1. The space W^q , spanned by solutions of the form (6), has an even dimension $2\varsigma^q$. There exists a basis in W^q , consisting of ς^q "incoming" and ς^q "outgoing" waves.

• Incoming (outgoing) waves bring energy from $+\infty$ (to $+\infty$).

Waves in G

- Let $\eta \in C^{\infty}(\mathbb{R})$ be a smooth cut-off function such that $0 \leq \eta(t) \leq 1$ with $t \in \mathbb{R}$, $\eta(t) = 0$ with t < 0, $\eta(t) = 1$ with t > 1.
- For every wave $w \in W^q$ introduce a function

 $G \cap \Pi^q_+ \ni (y^q, z^q) \mapsto \eta(z^q - T)w(y^q, z^q),$

and extend it by zero to the domain G. All functions constructed by this procedure are called waves in G.

• The waves in G, corresponding to basis incoming (outgoing) waves in the spaces W^1, \ldots, W^T , we call incoming (outgoing), enumerate with a single index, and denote by $u_1^+, \ldots, u_{\Upsilon}^+$ $(u_1^-, \ldots, u_{\Upsilon}^-)$.

Scattering matrix (when k is not an eigenvalue)

Theorem 2. Let k belong to the continuous spectrum of the problem (1), (2), and k be not an eigenvalue. Then in the space $E_c(k)$ of continuous spectrum eigenfunctions there exists a basis $Y_1^+, \ldots, Y_{\Upsilon}^+$ with an asymptotics

$$Y_j^+(x) = u_j^+ + \sum_{l=1}^{\Upsilon} s_{jl} u_l^- + O(e^{-\alpha |x|}), \quad j = 1, \dots, \Upsilon,$$
(7)

as $|x| \to \infty$, where $\alpha > 0$ is a sufficiently small number. The matrix s with elements s_{jl} is unitary.

The matrix s, introduced in the Theorem 2, is called the scattering matrix of the problem (1), (2).

Scattering matrix

Theorem 3. Let k belong to the continuous spectrum and be an eigenvalue of the problem (1), (2) (obviously, $E_p(k) \subset E_c(k)$). Then in the quotient space $E_c(k)/E_p(k)$ there exists a basis with representatives $Y_1^+, \ldots, Y_{\Upsilon}^+$, subject to an asymptotics

$$Y_j^+(x) = u_j^+ + \sum_{l=1}^{\Upsilon} s_{jl} u_l^- + O(e^{-\alpha |x|}), \quad j = 1, \dots, \Upsilon,$$

as $|x| \to \infty$, where $\alpha > 0$ is a sufficiently small number. The matrix s with elements s_{jl} does not depend on the choice of the representatives and is unitary.

The matrix s, introduced in the Theorem 3, is called the scattering matrix of the problem (1), (2).

The weighted Sobolev space

Introduce a positive function $\rho_{\alpha} \in C^{\infty}(\overline{G})$:

$$\rho_{\alpha}(y^{q}, z^{q}) = \exp(\alpha z^{q}), \quad (y^{q}, z^{q}) \in G \cap \Pi_{+}^{q},$$

for $q = 1, ..., \mathcal{T}$, with the number α from (7). Denote by $H^l_{\alpha}(G)$, $l \ge 0$, the closure of $C^{\infty}_c(\overline{G})$ in the norm

$$||u; H^{l}_{\alpha}(G)|| := ||\rho_{\alpha}u; H^{l}(G)|| = \Big(\sum_{|\sigma|=0}^{l} \int_{G} |D^{\sigma}(\rho_{\alpha}u)|^{2} dx\Big)^{1/2}.$$

The space of vector valued functions with d components in $H^l_{\alpha}(G)$ is denoted by $H^l_{\alpha}(G; \mathbb{C}^d)$

The radiation principle (when k is not an eigenvalue)

Theorem 4. Suppose k is not an eigenvalue of the problem (1), (2). Let $f \in H^l_{\alpha}(G; \mathbb{C}^3)$, $h \in H^l_{\alpha}(G; \mathbb{C})$ satisfy compatibility condition (3). Then there exists a unique solution $U = (u^1, u^2)$ to the problem (1), (2), subject to the radiation conditions

$$V := U - \sum_{j=1}^{\Upsilon} c_j u_j^- \in H^{l+1}_{\alpha}(G; \mathbb{C}^6).$$

Here $c_j = i(F, Y_j^-)_G$ with $F := (\varepsilon f, 0)$, $Y_j^- := \sum_{l=1}^{\Upsilon} (s^{-1})_{jl} Y_l^+$, and Y_l^+ from the Theorem 2. The estimate

 $\|V; H^{l+1}_{\alpha}(G; \mathbb{C}^{6})\| + \sum_{j=1}^{\Upsilon} |c_{j}| \le \operatorname{const}(\|f; H^{l}_{\alpha}(G; \mathbb{C}^{3})\| + \|h; H^{l}_{\alpha}(G; \mathbb{C})\|)$

holds.

The radiation principle

Theorem 5. Let Z_1, \ldots, Z_d be a basis of $E_p(k)$ an let $f \in H^l_{\alpha}(G; \mathbb{C}^3)$, $h \in H^l_{\alpha}(G; \mathbb{C})$ satisfy compatibility condition (3) and orthogonality conditions $(F, Z_j)_G = 0, j = 1, \ldots, d$, where $F := (\varepsilon f, 0)$. Then there exists a solution $U = (u^1, u^2)$ to the problem (1), (2), subject to the radiation conditions

$$V := U - \sum_{j=1}^{\Upsilon} c_j u_j^- \in H^{l+1}_{\alpha}(G; \mathbb{C}^6).$$

Here $c_j = i(F, Y_j^-)_G$ with $Y_j^- := \sum_{l=1}^{\Upsilon} (s^{-1})_{jl} Y_l^+$, and Y_l^+ from the Theorem 3. The solution U is defined up to an arbitrary summand in $E_p(k)$ and

$$\|V; H^{l+1}_{\alpha}(G; \mathbb{C}^{6})\| + \sum_{j=1}^{\Upsilon} |c_{j}| \leq \\ \leq \operatorname{const}(\|f; H^{l}_{\alpha}(G; \mathbb{C}^{3})\| + \|h; H^{l}_{\alpha}(G; \mathbb{C})\| + \|\rho_{\alpha}V; L_{2}(G; \mathbb{C}^{6})\|).$$
(8)

The solution U_0 , satisfying $(U_0, Z_j)_G = 0$, j = 1, ..., d, is unique; for U_0 the estimate (8) holds with the right-hand side changed by $\operatorname{const}(||f; H^l_{\alpha}(G; \mathbb{C}^3)|| + ||h; H^l_{\alpha}(G; \mathbb{C})||).$

- EM waveguides.
 State of the art
 The Maxwell
- system
- Elliptization
- Waveguide
- Permittivity matrices ε and μ
- Continuous and point spectrum
- Incoming and outgoing waves
- \bullet Waves in G
- Scattering matrix (when k is not an eigenvalue)
- Scattering matrix
- The weighted Sobolev space
- The radiation principle (when k is not an eigenvalue)
- The radiation principle

Thank you for your attention

- References
- References

Thank you for your attention

References

[V'66] Vainshtein, The theory of diffraction and the factorization method

- [ML'71] Mittra and Lee, Analytical Techniques in the Theory of Guided Waves,
- [NF'72] Nefedov and Fialkovskii, Asymptotic Diffraction Theory of Electromagnetic Waves on Finite Structures
- [IKS'91] Ilyinskii, Kravtsov, Sveshnikov, Mathematical models of electrodynamics
- [GI'13] Galishnikova, Ilyinskii, Method of integral equations in problems of waves diffraction
- [BDS'99] Bogolubov, Delitsyn, Sveshnikov, On the Problem of Excitation of a Waveguide Filled with an Inhomogeneous Medium
- [BDS'00] -,-,-, Solvability Conditions for the Radio Waveguide Excitation Problem,
- [D'07] Delitsyn, The statement and solubility of boundary-value problems for Maxwell's equations in a cylinder

References

[O'56] T. Ohmura, 1956, A new formulation on the electromagnetic field

[GK'74] Gudovich and Krein, Boundary value problems for overdeterminate systems of partial differential equations

[P'84] Picard R., 1984, On the low frequency asymptotics in electromagnetic theory

[BS'90] Birman, M.Sh., Solomyak, M.Z., 1990, The selfadjoint Maxwell operator in arbitrary domains,

[NP'91] Nazarov and Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries

[PP'14] Plamenevskii, Poretskii, The Maxwell system in waveguides with several cylindrical ends,