Matthias Täufer

 (TU Chemnitz)Mainz, 5 September 2016
(joint work with I. Veselić)

1. Landau operators

$$
H_{B}=-(i \nabla-A)^{2} \quad \text { on } L^{2}\left(\mathbb{R}^{2}\right) \text { where } \quad A=\frac{B}{2}\binom{x_{2}}{-x_{1}} .
$$

- Electron moving on thin plate, perpendicular magnetic field
- Lorenz force makes it go in circles
- Quantum mechanics \Rightarrow only certain frequencies allowed

1. Landau operators

$$
H_{B}=-(i \nabla-A)^{2} \quad \text { on } L^{2}\left(\mathbb{R}^{2}\right) \text { where } \quad A=\frac{B}{2}\binom{x_{2}}{-x_{1}} .
$$

- Electron moving on thin plate, perpendicular magnetic field
- Lorenz force makes it go in circles
- Quantum mechanics \Rightarrow only certain frequencies allowed

1. Landau operators

$$
H_{B}=-(i \nabla-A)^{2} \quad \text { on } L^{2}\left(\mathbb{R}^{2}\right) \text { where } \quad A=\frac{B}{2}\binom{x_{2}}{-x_{1}} .
$$

- Electron moving on thin plate, perpendicular magnetic field
- Lorenz force makes it go in circles
- Quantum mechanics \Rightarrow only certain frequencies allowed

1. Landau operators

$$
H_{B}=-(i \nabla-A)^{2} \quad \text { on } L^{2}\left(\mathbb{R}^{2}\right) \quad \text { where } \quad A=\frac{B}{2}\binom{x_{2}}{-x_{1}} .
$$

- Electron moving on thin plate, perpendicular magnetic field
- Lorenz force makes it go in circles
- Quantum mechanics \Rightarrow only certain frequencies allowed

1. Landau operators

$$
H_{B}=-(i \nabla-A)^{2} \quad \text { on } L^{2}\left(\mathbb{R}^{2}\right) \quad \text { where } \quad A=\frac{B}{2}\binom{x_{2}}{-x_{1}} .
$$

- Electron moving on thin plate, perpendicular magnetic field
- Lorenz force makes it go in circles
- Quantum mechanics \Rightarrow only certain frequencies allowed

1. Landau operators

$$
H_{B}=-(i \nabla-A)^{2} \quad \text { on } L^{2}\left(\mathbb{R}^{2}\right) \quad \text { where } \quad A=\frac{B}{2}\binom{x_{2}}{-x_{1}} .
$$

- infinitely degenerate eigenvalues at Landau Levels $B(2 \mathbb{N}-1)$
- Integrated density of states:

$$
N(E)=\lim _{|\Lambda| \rightarrow \infty} \frac{\text { Number of Eigenvalues of } H_{B} \mid \Lambda \text { below } E}{|\Lambda|} .
$$

1. Landau operators

$$
H_{B}=-(i \nabla-A)^{2} \quad \text { on } L^{2}\left(\mathbb{R}^{2}\right) \quad \text { where } \quad A=\frac{B}{2}\binom{x_{2}}{-x_{1}} .
$$

- infinitely degenerate eigenvalues at Landau Levels $B(2 \mathbb{N}-1)$
- Integrated density of states:
$N(E)=\lim _{|\Lambda| \rightarrow \infty} \frac{\text { Number of Eigenvalues of } H_{B} \mid \Lambda \text { below } E}{|\Lambda|}$.

1. Landau operators

$$
H_{B}=-(i \nabla-A)^{2} \quad \text { on } L^{2}\left(\mathbb{R}^{2}\right) \quad \text { where } \quad A=\frac{B}{2}\binom{x_{2}}{-x_{1}} .
$$

- infinitely degenerate eigenvalues at Landau Levels $B(2 \mathbb{N}-1)$
- Integrated density of states:
$N(E)=\lim _{|\Lambda| \rightarrow \infty} \frac{\text { Number of Eigenvalues of } H_{B} \mid \Lambda \text { below } E}{|\Lambda|}$.

1. Landau operators

$$
H_{B}=-(i \nabla-A)^{2} \quad \text { on } L^{2}\left(\mathbb{R}^{2}\right) \quad \text { where } \quad A=\frac{B}{2}\binom{x_{2}}{-x_{1}} .
$$

- infinitely degenerate eigenvalues at Landau Levels $B(2 \mathbb{N}-1)$
- Integrated density of states:

$$
N(E)=\lim _{|\Lambda| \rightarrow \infty} \frac{\text { Number of Eigenvalues of } H_{B} \mid \Lambda \text { below } E}{|\Lambda|}
$$

- Jumps in IDS related to quantum hall effect; since 1990 SI definition for electric resistance

2. Random breather model

Now add random potential

$$
H_{B, \omega}=H_{B}+V_{\omega}, \quad \omega \in \Omega \text { probability space. }
$$

- Fact: IDS still exists almost surely if V_{ω} ergodic

2. Random breather model

Now add random potential

$$
H_{B, \omega}=H_{B}+V_{\omega}, \quad \omega \in \Omega \text { probability space. }
$$

- Fact: IDS still exists almost surely if V_{ω} ergodic
- Physisicts' fact: IDS is "smeared out"

2. Random breather model

We are interested in the random breather potential

$$
V_{\omega}(x)=\lambda \sum_{j \in \mathbb{Z}^{2}} u\left(\frac{x-j}{\omega_{j}}\right), \quad \omega_{j}>0, \text { i.i.d., bounded. }
$$

- random dilation of of a single-site potential at every $j \in \mathbb{Z}^{2}$

2. Random breather model

We are interested in the random breather potential

$$
V_{\omega}(x)=\lambda \sum_{j \in \mathbb{Z}^{2}} u\left(\frac{x-j}{\omega_{j}}\right), \quad \omega_{j}>0, \text { i.i.d., bounded. }
$$

- random dilation of of a single-site potential at every $j \in \mathbb{Z}^{2}$
- $\lambda>0$ disorder parameter

2. Random breather model

We are interested in the random breather potential

$$
V_{\omega}(x)=\lambda \sum_{j \in \mathbb{Z}^{2}} u\left(\frac{x-j}{\omega_{j}}\right), \quad \omega_{j}>0, \text { i.i.d., bounded. }
$$

- random dilation of of a single-site potential at every $j \in \mathbb{Z}^{2}$
- $\lambda>0$ disorder parameter

2. Random breather model

$$
\begin{aligned}
H_{B, \omega}=-(i \nabla-A)^{2}+V_{\omega}, \quad A & =\frac{B}{2}\binom{x_{2}}{-x_{1}} \\
V_{\omega}(x) & =\lambda \sum_{j \in \mathbb{Z}^{2}} u\left(\frac{x-j}{\omega_{j}}\right), \quad \omega_{j} \text { i.i.d., bounded.. }
\end{aligned}
$$

2. Random breather model

$$
\begin{aligned}
H_{B, \omega}=-(i \nabla-A)^{2}+V_{\omega}, \quad A & =\frac{B}{2}\binom{x_{2}}{-x_{1}} \\
V_{\omega}(x) & =\lambda \sum_{j \in \mathbb{Z}^{2}} u\left(\frac{x-j}{\omega_{j}}\right), \quad \omega_{j} \text { i.i.d., bounded.. }
\end{aligned}
$$

- Goal: Wegner estimate:
\mathbb{E} [Number of eigenvalues of $H_{B, \omega} \mid \Lambda_{L}$ in $\left.I\right] \leq C \cdot|I|^{\theta} \cdot\left|\Lambda_{L}\right|$.

2. Random breather model

$$
\begin{aligned}
H_{B, \omega}=-(i \nabla-A)^{2}+V_{\omega}, \quad A & =\frac{B}{2}\binom{x_{2}}{-x_{1}} \\
V_{\omega}(x) & =\lambda \sum_{j \in \mathbb{Z}^{2}} u\left(\frac{x-j}{\omega_{j}}\right), \quad \omega_{j} \text { i.i.d., bounded. }
\end{aligned}
$$

- Goal: Wegner estimate:
$\mathbb{E}\left[\right.$ Number of eigenvalues of $\left.H_{B, \omega}\right|_{\Lambda_{L}}$ in $\left.I\right] \leq C \cdot|I|^{\theta} \cdot\left|\Lambda_{L}\right|$.

Spectrum of $H_{\omega, L}$

2. Random breather model

$$
\begin{aligned}
H_{B, \omega}=-(i \nabla-A)^{2}+V_{\omega}, \quad A & =\frac{B}{2}\binom{x_{2}}{-x_{1}} \\
V_{\omega}(x) & =\lambda \sum_{j \in \mathbb{Z}^{2}} u\left(\frac{x-j}{\omega_{j}}\right), \quad \omega_{j} \text { i.i.d., bounded.. }
\end{aligned}
$$

- Goal: Wegner estimate:
$\mathbb{E}\left[\right.$ Number of eigenvalues of $\left.H_{B, \omega}\right|_{\Lambda_{L}}$ in $\left.I\right] \leq C \cdot|I|^{\theta} \cdot\left|\Lambda_{L}\right|$.

2. Random breather model

$$
\begin{aligned}
H_{B, \omega}=-(i \nabla-A)^{2}+V_{\omega}, \quad A & =\frac{B}{2}\binom{x_{2}}{-x_{1}}, \\
V_{\omega}(x) & =\lambda \sum_{j \in \mathbb{Z}^{2}} u\left(\frac{x-j}{\omega_{j}}\right), \quad \omega_{j} \text { i.i.d., bounded.. }
\end{aligned}
$$

- Problem 1: non-linear dependence of V_{ω} on ω_{j} (usually solved by powerful unique continuation principles if operator has bounded coefficient functions), [Nakić, T, Tautenhahn, Veselić 16], [T., Veselić 15]

2. Random breather model

$$
\begin{aligned}
H_{B, \omega}=-(i \nabla-A)^{2}+V_{\omega}, \quad A & =\frac{B}{2}\binom{x_{2}}{-x_{1}}, \\
V_{\omega}(x) & =\lambda \sum_{j \in \mathbb{Z}^{2}} u\left(\frac{x-j}{\omega_{j}}\right), \quad \omega_{j} \text { i.i.d., bounded.. }
\end{aligned}
$$

- Problem 1: non-linear dependence of V_{ω} on ω_{j} (usually solved by powerful unique continuation principles if operator has bounded coefficient functions), [Nakić, T, Tautenhahn, Veselić 16], [T., Veselić 15]
- Problem 2: Operator H_{B} has unbounded coefficient functions (solvable if linear dependence of V_{ω} on random variables), [Combes, Hislop, Klopp 03/07]

2. Random breather model

$$
H_{B, \omega}=-(i \nabla-A)^{2}+V_{\omega}, \quad A=\frac{B}{2}\binom{x_{2}}{-x_{1}},
$$

$$
V_{\omega}(x)=\lambda \sum_{j \in \mathbb{Z}^{2}} u\left(\frac{x-j}{\omega_{j}}\right), \quad \omega_{j} \text { i.i.d., bounded.. }
$$

Vicious circle!

2. Random breather model

$$
\begin{aligned}
H_{B, \omega}=-(i \nabla-A)^{2}+V_{\omega}, \quad A & =\frac{B}{2}\binom{x_{2}}{-x_{1}}, \\
V_{\omega}(x) & =\lambda \sum_{j \in \mathbb{Z}^{2}} u\left(\frac{x-j}{\omega_{j}}\right), \quad \omega_{j} \text { i.i.d., bounded.. }
\end{aligned}
$$

Vicious circle!

- Way out: Combination of "a bit of both strategies", i.e. less strong UCP only for the free Landau Hamiltonian [Raikov, Warzel 02], [Combes, Hislop, Klopp, Raikov 04], [Rojas-Molina 12] and some linearization [Combes, Hislop, Klopp, Nakamura 02],

2. Random breather model

$$
H_{B, \omega}=-(i \nabla-A)^{2}+V_{\omega}, \quad A=\frac{B}{2}\binom{x_{2}}{-x_{1}},
$$

$$
V_{\omega}(x)=\lambda \sum_{j \in \mathbb{Z}^{2}} u\left(\frac{x-j}{\omega_{j}}\right), \quad \omega_{j} \text { i.i.d., bounded.. }
$$

Vicious circle!

- Way out: Combination of "a bit of both strategies", i.e. less strong UCP only for the free Landau Hamiltonian [Raikov, Warzel 02], [Combes, Hislop, Klopp, Raikov 04], [Rojas-Molina 12] and some linearization [Combes, Hislop, Klopp, Nakamura 02],
- BUT: need $\lambda \ll 1$!

Wegner estimate for
Landau operators with random breather potential

3. Wegner estimate

Theorem (Wegner estimate for Landau operator with random breather potential, T ,Veselić 16)
$\mathbb{E}\left[\right.$ Number of eigenvalues of $\left.H_{B, \omega}\right|_{\Lambda_{L}}$ in $\left.I\right] \leq C\left(B, E_{0}, \theta\right) \cdot|I|^{\theta} \cdot L^{2}$.

3. Wegner estimate

Theorem (Wegner estimate for Landau operator with random breather potential, T ,Veselić 16)

Assume that

1. $u \in L_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ such that there are $C_{u}, r>0$ such that for all $t \in\left[\omega_{-}, \omega_{+}\right]$we find $x_{0}=x_{0}(t) \in(-1,1)^{2}$ with

$$
\partial_{t} u\left(\frac{x}{t}\right) \geq C_{u} \chi_{B\left(x_{0}, r\right)}(x) \text { for almost every } x \in \mathbb{R}^{2}
$$

2. the ω_{j} are positive, uniformly bounded, i.i.d random variables with a bounded density.
\mathbb{E} [Number of eigenvalues of $\left.H_{B, \omega}\right|_{\Lambda_{L}}$ in $\left.I\right] \leq C\left(B, E_{0}, \theta\right) \cdot|I|^{\theta} \cdot L^{2}$.

3. Wegner estimate

Theorem (Wegner estimate for Landau operator with random breather potential, T ,Veselić 16)

Assume that

1. $u \in L_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ such that there are $C_{u}, r>0$ such that for all $t \in\left[\omega_{-}, \omega_{+}\right]$we find $x_{0}=x_{0}(t) \in(-1,1)^{2}$ with

$$
\partial_{t} u\left(\frac{x}{t}\right) \geq C_{u \chi_{B\left(x_{0}, r\right)}(x) \text { for almost every } x \in \mathbb{R}^{2}}
$$

2. the ω_{j} are positive, uniformly bounded, i.i.d random variables with a bounded density.
Let $B>0, E_{0} \in \mathbb{R}, \theta \in(0,1)$. Then there is $\lambda_{0}>0$ such that for all $0<\lambda<\lambda_{0}$, all intervals $I \subset\left(-\infty, E_{0}\right.$] and all sufficiently large L we have \mathbb{E} [Number of eigenvalues of $\left.H_{B, \omega}\right|_{\Lambda_{L}}$ in $\left.I\right] \leq C\left(B, E_{0}, \theta\right) \cdot|I|^{\theta} \cdot L^{2}$.

3. Wegner estimate

Recall Assumption 1 from the theorem:

Assume that

1. $u \in L_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ such that there are $C_{u}, r>0$ such that for all $t \in\left[\omega_{-}, \omega_{+}\right]$we find $x_{0}=x_{0}(t) \in(-1,1)^{2}$ with

$$
\partial_{t} u\left(\frac{x}{t}\right) \geq C_{u} \chi_{B\left(x_{0}, r\right)}(x) \text { for almost every } x \in \mathbb{R}^{2}
$$

Looks similar to [Combes, Hislop, Klopp, Nakamura 02], but there they have slightly different assumption \Rightarrow Very restrictive! Singularities!

3. Wegner estimate

Recall Assumption 1 from the theorem:

Assume that

1. $u \in L_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ such that there are $C_{u}, r>0$ such that for all $t \in\left[\omega_{-}, \omega_{+}\right]$we find $x_{0}=x_{0}(t) \in(-1,1)^{2}$ with

$$
\partial_{t} u\left(\frac{x}{t}\right) \geq C_{u \chi_{B\left(x_{0}, r\right)}}(x) \text { for almost every } x \in \mathbb{R}^{2}
$$

Looks similar to [Combes, Hislop, Klopp, Nakamura 02], but there they have slightly different assumption \Rightarrow Very restrictive! Singularities!

Examples:

- The hat potential $u(x)=\chi_{|x| \leq 1} \cdot(1-|x|)$,
- the smooth bump potential $u(x)=\chi_{|x| \leq 1} \cdot \exp \left(-1 /\left(1-x^{2}\right)\right)$.

3. Wegner estimate

Corollary

The integrated density of states is locally Hölder continuous with respect to every exponent $\theta \in(0,1)$.

- Physisicts' fact verified:

Wegner estimate for
Landau operators with random
breather potential

4. Proof (sort of)

- Write No. of Eigenvalues as trace

$$
\begin{aligned}
& {\left[\text { Number of eigenvalues of }\left.H_{B, \omega}\right|_{\Lambda_{L}} \text { in } I\right] } \\
= & \operatorname{Tr}\left[\chi_{I}\left(H_{B, \omega}\right)\right]
\end{aligned}
$$

4. Proof (sort of)

- Write No. of Eigenvalues as trace

$$
\begin{aligned}
& {\left[\text { Number of eigenvalues of } H_{B, \omega} \mid \Lambda_{L}\right.} \\
&\text { in } I] \\
&= \operatorname{Tr}\left[\chi_{I}\left(H_{B, \omega}\right)\right]
\end{aligned}
$$

- Decomposition with respect to $\chi_{J}\left(H_{B}\right)$ à la [Combes, Hislop, Klopp 03/07], $I \subset J,|J| \leq 2 B$ (distance between Landau levels)

$$
=\operatorname{Tr}\left[\chi_{I}\left(H_{B, \omega}\right) \chi_{J}\left(H_{B}\right)\right]+\operatorname{Tr}\left[\chi_{I}\left(H_{B, \omega}\right)\left(\operatorname{Id}-\chi_{J}\left(H_{B}\right)\right)\right]
$$

4. Proof (sort of)

- Write No. of Eigenvalues as trace
[Number of eigenvalues of $\left.H_{B, \omega}\right|_{\Lambda_{L}}$ in I] $=\operatorname{Tr}\left[\chi_{I}\left(H_{B, \omega}\right)\right]$
- Decomposition with respect to $\chi_{J}\left(H_{B}\right)$ à la [Combes, Hislop, Klopp 03/07],

$$
\begin{aligned}
I \subset J,|J| & \leq 2 B \text { (distance between Landau levels) } \\
= & \operatorname{Tr}\left[\chi_{I}\left(H_{B, \omega}\right) \chi_{J}\left(H_{B}\right)\right]+\operatorname{Tr}\left[\chi_{I}\left(H_{B, \omega}\right)\left(\operatorname{ld}-\chi_{J}\left(H_{B}\right)\right)\right]
\end{aligned}
$$

- Second trace: use that I and J^{c} are far apart

$$
\leq \operatorname{Tr}\left[\chi_{I}\left(H_{B, \omega}\right) \chi_{J}\left(H_{B}\right)\right]+\frac{\left\|\lambda V_{\omega}\right\|^{2}}{\operatorname{dist}\left(I, J^{c}\right)^{2}} \cdot \operatorname{Tr}\left[\chi_{I}\left(H_{B, \omega}\right)\right]
$$

4. Proof (sort of)

$$
\operatorname{Tr}\left[\chi_{I}\left(H_{B, \omega}\right)\right] \leq \operatorname{Tr}\left[\chi_{I}\left(H_{B, \omega}\right) \chi_{J}\left(H_{B}\right)\right]+\frac{\left\|\lambda V_{\omega}\right\|^{2}}{\operatorname{dist}\left(I, J^{c}\right)^{2}} \cdot \operatorname{Tr}\left[\chi_{I}\left(H_{B, \omega}\right)\right]
$$

4. Proof (sort of)

$$
\operatorname{Tr}\left[\chi_{I}\left(H_{B, \omega}\right)\right] \leq \operatorname{Tr}\left[\chi_{I}\left(H_{B, \omega}\right) \chi_{J}\left(H_{B}\right)\right]+\frac{\left\|\lambda V_{\omega}\right\|^{2}}{\operatorname{dist}\left(I, J^{c}\right)^{2}} \cdot \operatorname{Tr}\left[\chi_{I}\left(H_{B, \omega}\right)\right]
$$

- First trace: smuggle in $\sum_{j} \partial_{\omega_{j}} V_{\omega}$ by estimate on $\chi_{J}\left(H_{B}\right)$, needs that J contains at most one Landau level

$$
\leq C \operatorname{Tr}\left[\chi_{I}\left(H_{B, \omega}\right) \chi_{J}\left(H_{B}\right)\left(\sum_{j} \partial_{\omega_{j}} v_{\omega}\right) \chi_{J}\left(H_{B}\right)\right]+\frac{\left\|\lambda V_{\omega}\right\|^{2}}{\operatorname{dist}\left(I, J^{c}\right)^{2}} \cdot \ldots
$$

4. Proof (sort of)

$$
\operatorname{Tr}\left[\chi_{I}\left(H_{B, \omega}\right)\right] \leq \operatorname{Tr}\left[\chi_{l}\left(H_{B, \omega}\right) \chi_{J}\left(H_{B}\right)\right]+\frac{\left\|\lambda V_{\omega}\right\|^{2}}{\operatorname{dist}(I, J c)^{2}} \cdot \operatorname{Tr}\left[\chi_{I}\left(H_{B, \omega}\right)\right]
$$

- First trace: smuggle in $\sum_{j} \partial_{\omega_{j}} V_{\omega}$ by estimate on $\chi_{J}\left(H_{B}\right)$, needs that J contains at most one Landau level

$$
\leq C \operatorname{Tr}\left[\chi_{l}\left(H_{B, \omega}\right) \chi_{J}\left(H_{B}\right)\left(\sum_{j} \partial_{\omega_{j}} V_{\omega}\right) \chi_{J}\left(H_{B}\right)\right]+\frac{\left\|\lambda V_{\omega}\right\|^{2}}{\operatorname{dist}(l, J C)^{2}} \cdot \ldots
$$

- Rearrange and hide $\chi_{I}\left(H_{B, \omega}\right)$ on the left hand side to find

$$
\operatorname{Tr}\left[\chi_{l}\left(H_{B, \omega}\right)\right] \leq C \operatorname{Tr}\left[\chi_{I}\left(H_{B, \omega}\right)\left(\sum_{j} \partial_{\omega_{j}} V_{\omega}\right)\right] .
$$

4. Proof (sort of)

$$
\operatorname{Tr}\left[\chi_{\prime}\left(H_{B, \omega}\right)\right] \leq \operatorname{Tr}\left[\chi_{l}\left(H_{B, \omega}\right) \chi_{J}\left(H_{B}\right)\right]+\frac{\left\|\lambda V_{\omega}\right\|^{2}}{\operatorname{dist}(I, J C)^{2}} \cdot \operatorname{Tr}\left[\chi_{\prime}\left(H_{B, \omega}\right)\right]
$$

- First trace: smuggle in $\sum_{j} \partial_{\omega_{j}} V_{\omega}$ by estimate on $\chi_{J}\left(H_{B}\right)$, needs that J contains at most one Landau level

$$
\leq C \operatorname{Tr}\left[\chi_{I}\left(H_{B, \omega}\right) \chi_{J}\left(H_{B}\right)\left(\sum_{j} \partial_{\omega_{j}} V_{\omega}\right) \chi_{J}\left(H_{B}\right)\right]+\frac{\left\|\lambda V_{\omega}\right\|^{2}}{\operatorname{dist}\left(I, J^{c}\right)^{2}} \cdot \cdots
$$

- Rearrange and hide $\chi_{I}\left(H_{B, \omega}\right)$ on the left hand side to find

$$
\operatorname{Tr}\left[\chi_{l}\left(H_{B, \omega}\right)\right] \leq C \operatorname{Tr}\left[\chi_{I}\left(H_{B, \omega}\right)\left(\sum_{j} \partial_{\omega_{j}} V_{\omega}\right)\right]
$$

- Requires $\left\|\lambda V_{\omega}\right\| / \operatorname{dist}\left(I, J^{c}\right)$ small. (Here the assumption $\lambda \ll 1$ enters).

4. Proof (sort of)

These steps are summarized by the following lemma

Lemma (T, Veselić 16)

H lower semibounded, purely discrete spectrum, V bdd. symmetric, $I \subset J \subset \mathbb{R}$ intervals. Assume there is $W \geq 0$ such that

$$
\chi_{J}(H) W_{\chi_{J}}(H) \geq C_{\chi_{J}}(H) .
$$

Then, for $\|V\|$ small we have

$$
\operatorname{Tr}\left[\chi_{I}(H+V)\right] \leq \tilde{C} \operatorname{Tr}\left(\chi_{I}(H+V)\left(W+W^{2}\right)\right)
$$

and \tilde{C} is known explicitely

4. Proof (sort of)

$$
\operatorname{Tr}\left[\chi_{l}\left(H_{B, \omega}\right)\right] \leq C \operatorname{Tr}\left[\chi_{I}\left(H_{B, \omega}\right)\left(\sum_{j} \partial_{\omega_{j}} v_{\omega}\right)\right]
$$

4. Proof (sort of)

$$
\begin{aligned}
\operatorname{Tr}\left[\chi_{\prime}\left(H_{B, \omega}\right)\right] & \leq C \operatorname{Tr}\left[\chi_{\prime}\left(H_{B, \omega}\right)\left(\sum_{j} \partial_{\omega_{j}} V_{\omega}\right)\right] \\
& \leq C \operatorname{Tr}\left[f^{\prime}\left(H_{B, \omega}\right)\left(\sum_{j} \partial_{\omega j} V_{\omega}\right)\right]
\end{aligned}
$$

4. Proof (sort of)

$$
\begin{aligned}
\operatorname{Tr}\left[\chi_{l}\left(H_{B, \omega}\right)\right] & \leq C \operatorname{Tr}\left[\chi_{l}\left(H_{B, \omega}\right)\left(\sum_{j} \partial_{\omega_{j}} V_{\omega}\right)\right] \\
& \leq C \operatorname{Tr}\left[f^{\prime}\left(H_{B, \omega}\right)\left(\sum_{j} \partial_{\omega_{j}} V_{\omega}\right)\right] \\
& =C \operatorname{Tr}\left[\sum_{j} \partial_{\omega_{j}}\left(f\left(H_{B, \omega}\right)\right)\right]
\end{aligned}
$$

4. Proof (sort of)

Take expectation

$$
\mathbb{E} \operatorname{Tr}\left[\chi_{I}\left(H_{B, \omega}\right)\right] \leq C \mathbb{E} \operatorname{Tr}\left[\sum_{j} \partial_{\omega_{j}}\left(f\left(H_{B, \omega}\right)\right)\right]
$$

4. Proof (sort of)

Take expectation

$$
\mathbb{E} \operatorname{Tr}\left[\chi_{I}\left(H_{B, \omega}\right)\right] \leq C \mathbb{E} \operatorname{Tr}\left[\sum_{j} \partial_{\omega_{j}}\left(f\left(H_{B, \omega}\right)\right)\right]
$$

Rest of the proof is folklore:

- sum over j gives L^{2} (volume)
- probability estimate gives $|I|^{\theta}$

$$
\mathbb{E} \operatorname{Tr}\left[\chi_{I}\left(H_{B, \omega}\right)\right] \leq C \cdot|I|^{\theta} \cdot L^{2}
$$

Some References

- Combes, Hislop, Klopp: Hölder continuity of the integrated density of states for some random operators at all energies, IMRN (2003)
- Combes, Hislop, Klopp: An optimal Wegner estimate and its application to the global continuity of the integrated density of states for random operators, Duke M. Journ. (2007)
- Combes, Hislop, Nakamura: The Wegner estimate and the integrated density of states for some random operators, Proc. Indian Acad. Sci., 2002
- Nakić, T, Tautenhahn, Veselić: Scale-free unique continuation principle, eigenvalue lifting and Wegner estimates for random Schrödinger operators, submitted, 2016
- Rojas-Molina: Characterization of the Anderson metal-insulator transition for non ergodic operators and appilcation, Ann. Henri Poincaré (2012).
- T., Veselić: Wegner Estimate for Landau-Breather Hamiltonians, J. Math. Phys., 2016.
- T. Veselić: Conditional Wegner estimate for the standard random breather model, J. Stat. Phys., 2016

Thank you for your attention!

1. Landau
operators
2. Wegner
3. Proof
(sort of)
