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Introduction

Random matrices was initiated in the 1920s– 1930s by statisticians and
introduced in physics in the 1950s– 1960s by Wigner and Dyson. They widely
used in fields such:

quantum field theory, quantum mechanics (quantum chaos)
probability theory, statistics, statistical mechanics
telecommunication theory
combinatorics, operator theory, number theory
etc...
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Examples

Wigner ensemble [W:57]
M - hermitian or real symmetric n × n matrices

Mij = n−1/2Wij ,

{Wij}1≤i≤j≤n-i.i.d.random variables

E{Wij} = 0, E{|Wij |2} = 1, E{|Wii |2} = 2,

Deformed Wigner ensemble [P:72]

Mij = H(0) + n−1/2Wij ,

where H(0) some random or non random matrix independent on W .
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Sample covariance ensemble [MP:67]:

M = n−1B(YY ∗)B,

Y – real or complex n ×m matrix with i.i.d. entries Yij

E{Yij} = 0, E{|Yij |2} = 1

B–n × n positive matrix bounded uniformly in n and independent of Y

Deformed sample covariance ensembles

M = H(0) + n−1B(Y + A)(Y + A)∗B,

where H(0), A and B > 0 do not depend on Y .
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Global regime: main objects and problems
Let {λi}n

i=1 be random eigenvalues of our M.

Normalized Eigenvalue Counting Measure

Nn[∆] = ]{λi ∈ ∆}/n

Linear Eigenvalue Statistics corresponding to the test function h

Nn[h] =
n∑

i=1

h(λi ) =

∫
h(λ)Nn(dλ)

Problems:
Find lim

n→∞
E{Nn[∆]} or lim

n→∞
E{n−1Nn[h]};

Prove that Var{n−1Nn[h]} → 0 as n→∞ and find the rate of
convergence;
Find Cov{Nn[h1],Nn[h2]};
Prove CLT for the fluctuation of Nn[h] for smooth test functions;
Prove CLT for the fluctuation of Nn[h] for indicators;

D. Tieplova 12. 09. 2016 6 / 18



Main approaches to the global regime: the moment
and the resolvent one
Both approaches are based on the simple formula:

Nn[h] = Tr h(M)

Moment approach
Set hk (λ) = λk , then

Nn[hk ] = Tr Mk , E{Nn[hk ]} = E{Tr Mk}

Cov{Nn[hk ],Nn[hm]} = Cov{Tr Mk ,Tr Mm}

E{Tr Mk} =

∫
λk Nn(dλ)

So if we want to find the limit of E{Nn[h]} it is sufficient to find limits of
E{Tr Mk}.

Historically the moment approach was the first one. But the resolvent
approach provides more simple proofs.
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Resolvent approach

Consider any z : =z 6= 0 and set hz(λ) = (λ− z)−1, then

Nn[hz ] = Tr(M − z )−1, E{Nn[hz ]} = E{Tr(M − z )−1}

Cov{Nn[hz1 ],Nn[hz2 ]} = Cov{Tr (M − z1)−1,Tr (M − z2)−1}

The Stieltjes transform fn of Nn,

fn(z) =

∫
Nn(dλ)

λ− z
, =z 6= 0.

fn(z) = n−1E{TrGM(z)}, GM(z) = (M − z)−1

There is the one-to-one correspondence between finite nonnegative
measures and their Stieltjes transforms, so if we can find the limit of Stieltjes
transforms fn then we can find the limiting measure N.
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Zero level results: law of large numbers for LES
The sample covariance matrices can be written as follows

M =
m∑
µ=1

B(Yµ ⊗ Yµ)B.

In this case we can use the well-know formula

GM+Y⊗Ȳ = GM −
GM(Y ⊗ Ȳ )GM

1 + (GMY ,Y )
.

It is naturally to expect that GM+Y⊗Ȳ and GM are not very different. So with
this formula we can find the equation on E{TrG}.
Commonly it convenient to use the similar identity

Gpp = − 1
z + Mpp + (G(p)m(p),m(p))

,

where G(p) = (M(p) − z)−1, m(p) = (Mp,1, . . . ,Mp,p−1,Mp,p+1, . . . ,Mp,n), and
M(p) denotes M without the p-th line and the p-th column.
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Wigner ensembles theorems [W:58]

Mn = n−1/2Wn

Denote by Nn the NCM of eigenvalues of Wn. Then Nn
w−→ N, where N is

non-random probability measure, and for the Stieltjes transform f of N we
have:

f (z) =
−z +

√
z2 − 4

2
.

Deformed semicircle law [P:72]

Mn = H(0)
n + n−1/2Wn

Assume that the NCM N(0)
n of H(0) converges weakly to a nonnegative

probability measure N(0)(with the Stieltjes transform f (0)). Then

f (z) = f (0)(z + f (z)).
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Marchenko-Pastur theorem [MP:67]

Mn = n−1B(YY ∗)B.

Denote by Nn and σn the Normalized Counting Measure of eigenvalues of Mn
and B2 respectively. Assume that

lim
n→∞

σn = σ,

mn → +∞, n→ +∞, cn = mn/n→ c ∈ [0,+∞).

Then Nn converge weakly in probability to a non-random probability measure
N. And the Stieltjes transform f of N is uniquely determined by the equation

f (z) =

(∫
τσ(dτ)

1 + τ f (z)
− z
)−1

in the class of Stieltjes transforms of probability measures.
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Previous results

Wigner ensemble
L.Pastur(1972):
The convergence of the Normalized Counting Measures of W under the
minimal conditions on the distribution of wij (the Lindeberg type
conditions);
A.Khorunzhy, B.Khoruzhenko, L.Pastur (1996):
Covariance of traces of resolvents for Wigner matrices;
Z.Bai, J.W.Silverstein (2004):
CLT for polynomial test functions for some generalizations of the Wigner
and sample covariance matrices with B 6= I with κ4 = 0;
A.Lytova, L. Pastur (2009):
CLT for Wigner and sample covariance matrix with B = I, κ4 6= 0 and test
functions possessing 5 derivatives;
M.Shcherbina (2011):
CLT for Wigner and sample covariance matrix with B = I, κ4 6= 0 and test
functions possessing 2 derivatives.
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Sample covarience matrices
J.W.Silverstein, R.B.Dozier (2004):
The convergence of the Normalized Counting Measures of

H =
1
N

(Rn + σXn)(Rn + σXn)∗;

Z.Bai, J.W.Silverstein (2004):
CLT for sample covariance matrix with B 6= I with κ4 = 0 and analytic test
functions;
A.Lytova, L. Pastur (2009):
CLT for Wigner and sample covariance matrix with B = I, κ4 6= 0 and test
functions possessing 5 derivatives;
M.Shcherbina (2011):
CLT for Wigner and sample covariance matrix with B = I, κ4 6= 0 and test
functions possessing 2 derivatives;
J.Najim, J.Yao (2014):
CLT for sample covariance matrix with B 6= I and test functions
possessing 5 derivatives.
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Our model

Consider hermitian random matrices:

Mn =
1
n2

m∑
µ=1

Xµ ⊗ X̄µ,

where Xµ = B(Yµ ⊗Yµ)(in standard model Xµ = BYµ) and {Yµ}m
µ=1 are i.i.d.

random vectors from Cn, such that:

E{Yµ
i } = E{Yµ

i Y ν
k } = 0, E{Yµ

i Ȳµ
k } = δik .

B = {Bī ,̄j} is an n2 × n2 hermitian matrix, where ī = (i1, i2) j̄ = (j1, j2) are
multi-indexe.
Introduce the n2 × n2 matrix

Jp̄,q̄ = δp̄ q̄ + δp̄′q̄ ,

where p̄′ = (p2,p1).
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Theorem
Denote by Nn and σn the Normalized Counting Measure of eigenvalues of Mn
and BJB respectively. Assume that

lim
n→∞

σn = σ,

mn → +∞, n→ +∞, cn = mn/n2 → c ∈ [0,+∞).

Then Nn converge weakly in probability to a non-random probability measure
N. And if f (0) is the Stieltjes transform of σ, then the Stieltjes transform f of N
is uniquely determined by the equation

f (z) = f (0)

(
z

c − zf (z)− 1

)
(c − zf (z)− 1)−1

in the class of Stieltjes transforms of probability measures.
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The idea of proof (1)

We use the resolvent method. So denote

G = (Mn − z)−1, Gµ = G |Xµ=0 .

In our case:

G = Gµ − n−2 Gµ(Xµ ⊗ X̄µ)Gµ

1 + n−2(GµXµ,Xµ)
.

This imply that for any matrix K :

n−2Tr(KGM) = n−4
m∑
µ=1

(KGµXµ,Xµ)

1 + n−2(GµXµ,Xµ)
.

On the next step we want to find the mathematical expectation of both sides.
Since Gµ and Xµ are independent

Eµ{(KGµXµ,Xµ)} = Tr(KGµBJB).
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The idea of proof (2)

It’s convenient to find expectation separately of numerator and denominator.
For this we need to prove that for any bounded matrices K :

Var{n−2(KGµXµ,Xµ)} = o(1),n→ +∞.

This part of the proof is the most difficult (algebraically) because of the special
form of our matrices.
To replace Gµ with G we need the next expression:

n−2|TrK (G −Gµ)| = O(n−2)

which holds for any bounded matrix K .
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The idea of proof (3)
At the end we need to prove that

Var{n−2TrKG} ≤ c
n2 .

These facts we prove using standard scheme which can be used for many
different ensembles.
Above relations imply that for any bounded non-random matrix K :

1
n2 E{Tr(KGM)} =

cnn−2E{Tr(KGBJB)}
1 + n−2E{Tr(GBJB)}

+ o(1), n→∞.

Taking

K = (cn(1 + n−2E{Tr(GBJB)})−1BJB − z)−1

and K = I, we obtain

fn(z) = f (0)
n

(
z

cn − zfn(z)− 1

)
(cn − zfn(z)− 1)−1 + o(1).
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