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The Euler-Bernoulli operator

We consider the Euler-Bernoulli operator E given by

Eu =
1

b
(au′′)′′,

on the interval [0, 1] with the boundary conditions

u(0) = u(1) = u′′(0) = u′′(1) = 0,

where the coefficients a, b are positive.
The operator E describes the relationship between the pinned-pinned

beam’s deflection and the applied load, a is the rigidity and b is the
density of the beam.
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I. High energy asymptotics and
Ambarzumyan type inverse results
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Second order operators

1. Recall the following result of Ambarzumyan:
Let λ0 < λ1 < ... be the eigenvalues of the problem

−y ′′ + V (x)y = λy , x ∈ [0, 1], y ′(0) = y ′(1) = 0,

where V is a real continuous function. Then λn = (πn)2 for all
n = 0, 1, 2, ..., iff V = 0.
Remark. In general, the spectrum of the second order operator does not
determine the potential, i.e., Ambarzumyan’s theorem is not valid for
other boundary conditions.

2. Let λ1 < λ2 < ... be the eigenvalues of the problem

−y ′′ + V (x)y = λy , x ∈ [0, 1], y(0) = y(1) = 0,

where V ∈ L1(0, 1). Then

λn = (πn)2 +

∫ 1

0
V (x)dx + o(1) as n→∞. (1)
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3. Consider the weighted second order operator

− 1

b
u′′
xx , x ∈ [0, 1], u(0) = u(1) = 0, (2)

with positive coefficient b, b′′
xx ∈ L1(0, 1), satisfying the conditions

b′
x(0) = b′

x(1) = 0 and normalized by
∫ 1
0 b

1
2 ds = 1. Let λ1 < λ2 < ... be

the eigenvalues of this operator. The Liouville transformation

t(x) =

∫ x

0
b

1
2 (s)ds, y(t) = b

1
4 (x(t))u(x(t)),

yields that the operator (2) is unitarily equivalent to the operator

−y ′′
tt + (β2 + β′t)y , t ∈ [0, 1], y(0) = y(1) = 0,

where β = b′x
4b . The asymptotics (1) gives

λn = (πn)2 +

∫ 1

0
β2(t)dt + o(1) as n→∞.

Assume that λn = (πn)2 for all n ∈ N. Then the last asymptotics implies
β = 0, which yields b = 1. We obtain a result, similar to the result of
Ambarzumyan: the eigenvalues λn = (πn)2 for all n ∈ N iff b = 1.
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Fourth order operators

Consider the self-adjoint operator

Hy = y ′′′′ + 2(py ′)′ + qy ,

acting on L2(0, 1) with the boundary conditions

y(0) = y ′′(0) = y(1) = y ′′(1) = 0,

where p, q ∈ L1(0, 1). The spectrum of the operator H is discrete and
consists of the eigenvalues of multiplicity 6 2, indexed by

λ1 6 λ2 6 λ3 6 ...,

counting with multiplicities. They satisfy

λn = (πn)4 − 2(πn)2
∫ 1

0
p(t)dt + o(n2), n→∞. (3)

If p = q = 0, then λn = (πn)4, n ∈ N.
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The Euler-Bernoulli operator

Consider the Euler-Bernoulli operator E given by

Eu =
1

b
(au′′)′′,

acting on L2((0, 1), b(x)dx) with the boundary conditions

u(0) = u(1) = u′′(0) = u′′(1) = 0.

We assume that the coefficients a, b satisfy

a′(0) = a′(1) = b′(0) = b′(1) = 0, a, b > 0, a′′, b′′ ∈ L1(0, 1),

and they are normalized by the conditions a(0) = 1,
∫ 1
0 (ba )

1
4 dx = 1.

A unitary Liouville type transformation shows that the operator E is
unitarily equivalent to the operator H. Then the eigenvalues λn, n > 1 of
E coincide with the eigenvalues of H. In particular, in the case of a
uniform beam (i.e., a, b = 1) the corresponding eigenvalues have the form
λn = (πn)4, n ∈ N.

A.Badanin joint work with E.Korotyaev Inverse problems and sharp eigenvalue asymptotics for Euler-Bernoulli operatorsSeptember 12, 2016 7 / 21



The asymptotics (3) gives the following Ambarzumyan type inverse
result.

Theorem (Badanin, Korotyaev, 2015)

i) The eigenvalues λn of the operator E satisfy

λn = (πn)4 + (πn)2ψ0 + o(n2) as n→∞,

where

ψ0 =

∫ 1

0

5α2 + 5β2 + 6αβ

4ξ
dx > 0, α =

a′

4a
, β =

b′

4b
, ξ =

(b

a

) 1
4
.

ii) λn = (πn)4 for all n > 1 iff a = b = 1.

Remark. 1) We have ψ0(α, β) = ψ0(−β,−α) > 0 and ψ0(α, β) = 0 iff
α = β = 0. Any perturbation of the coefficients a, b moves strongly all
large eigenvalues to the right. Moreover, the first two terms in the
eigenvalue asymptotics for the operators E(a, b) and E( 1

b ,
1
a ) coincide.

2) We believe that these results hold for larger class of boundary
conditions.
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II. Near constant coefficients and
Barcilon type inverse results
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Second order operators

Consider the weighted operator with the coefficient close to one:

− 1

Bε
u′′, u(0) = u(1) = 0,

where Bε(x) =
bε(x)

(
∫ 1
0 b

ε
2 (x)dx)2

, b′ ∈ L1(0, 1), ε ∈ R, ε→ 0,

∫ 1

0
B

1
2
ε (x)dx = 1, Bε(x)→ 1 as ε→ 0

uniformly on [0, 1]. Let λ1(ε) < λ2(ε) < λ3(ε) < ... be its eigenvalues.
Each eigenvalue λn(ε), n > 1, satisfies

λn(ε) = (πn)2 − 2πnβ̂snε+ O(ε2)

as ε→ 0, where β =
b′

4b
, β̂sn =

∫ 1

0
β(t) sin(2πnt)dt. The asymptotics

shows that each perturbed eigenvalue λn(ε) remains close to the
unperturbed one λn(0) = (πn)2 under the small perturbations. They can
move to the left or to the right.

A.Badanin joint work with E.Korotyaev Inverse problems and sharp eigenvalue asymptotics for Euler-Bernoulli operatorsSeptember 12, 2016 10 / 21



In particular,
λ′n(0) = −2πnβ̂sn.

Assume that for some unknown

β ∈ L1
odd(0, 1) = {f ∈ L1(0, 1) : f (x) = −f (1− x), x ∈ (0, 1)}

we have the sequence λ′n(0), n ∈ N, of derivatives of the eigenvalues at
ε = 0. Then β is uniquely determined by

β(x) = 2
∞∑
n=1

β̂sn sin 2πnx = −
∞∑
n=1

λ′n(0)

πn
sin 2πnx , x ∈ (0, 1).
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Euler-Bernoulli operators

Consider the Euler-Bernoulli operator with the coefficients close to one:

Eεu =
1

Bε
(aεu′′)′′, u(0) = u(1) = u′′(0) = u′′(1) = 0,

where

Bε(x) =
bε(x)

(
∫ 1
0 (b(x)a(x) )

ε
4 dx)4

, a′, b′ ∈ L1(0, 1), ε ∈ R, ε→ 0,

∫ 1

0

(Bε(x)

aε(x)

) 1
4
dx = 1, Bε(x)→ 1 as ε→ 0

uniformly on [0, 1]. Let λ1(ε) 6 λ2(ε) 6 λ3(ε) 6 ... be the eigenvalues of
Eε labeled counting with multiplicity.
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Theorem (Badanin, Korotyaev, 2015)

The eigenvalues λn(ε), n > 1, of the operator Eε satisfy

λn(ε) = (πn)4 + 2(πn)3(α̂sn − β̂sn)ε+ O(ε2)

as ε→ 0, where

α =
a′

4a
, β =

b′

4b
, f̂sn =

∫ 1

0
f (t) sin(2πnt)dt.

Remark. The asymptotics shows that each perturbed eigenvalue λn(ε)
remains close to the unperturbed one λn(0) = (πn)4 under the small
perturbations. They can move to the left or to the right. In particular,

λ′n(0) = 2(πn)3(α̂sn − β̂sn). (4)

If α̂sn > β̂sn, we obtain λn(ε) > λn(0). If α̂sn < β̂sn, then we obtain
λn(ε) < λn(0).
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Assume that α ∈ L1(0, 1) and for some unknown

β ∈ L1
odd(0, 1) = {f ∈ L1(0, 1) : f (x) = f (1− x), x ∈ (0, 1)}

we have the sequence λ′n(0), n ∈ N, of derivatives of the eigenvalues of the
operator Eε at ε = 0. Identity (4) gives

α(x)− α(−x)

2
− β(x) = 2

∞∑
n=1

(α̂sn − β̂sn) sin 2πnx =
∞∑
n=1

λ′n(0)

(πn)3
sin 2πnx ,

for all x ∈ (0, 1). Then β is uniquely determined by

β(x) =
α(x)− α(−x)

2
−

∞∑
n=1

λ′n(0)

(πn)3
sin 2πnx , x ∈ (0, 1).

Remarks. 1) Similar arguments show that the function α ∈ L1
odd(0, 1) can

be determined by β ∈ L1(0, 1) and λ′n(0), n ∈ N.
2) Barcilon (1987) proved that the Euler-Bernoulli operator can be

determined by the sequences (λ′n(0))∞n=1 for three different boundary
problems.
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III. Sharp high energy asymptotics
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Second order operator

Let λ1 < λ2 < ... be the eigenvalues of the problem

−y ′′ + V (x)y = λy , x ∈ [0, 1], y(0) = y(1) = 0,

where V ∈ L1(0, 1). Then

λn = (πn)2 +

∫ 1

0
V (x)dx −

∫ 1

0
V (x) cos 2πnxdx +

o(1)

n
as n→∞.
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Fourth order operator

Consider the self-adjoint operator

Hy = y ′′′′ + 2(py ′)′ + qy ,

acting on L2(0, 1) with the boundary conditions

y(0) = y ′′(0) = y(1) = y ′′(1) = 0,

Caudill-Perry-Schueller (1998) proved that in the case p, q ∈ L1(0, 1)

λn = (πn)4 − 2(πn)2
(
p̂0 + p̂cn

)
+ O(n1+ε), n→∞,

for any ε > 0 small enough,

p̂cn =

∫ 1

0
p(t) cos(2πnt)dt, p̂0 =

∫ 1

0
p(t)dt.

If p ∈ L1(0, 1), p′ 6∈ L1(0, 1), then there are no q in the leading terms.
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In order to get q in leading terms we assume p′′ ∈ L1(0, 1).

Theorem (Badanin, Korotyaev, 2015)

Let p′′, q ∈ L1(0, 1). Then the eigenvalues λn of the operator H satisfy

λn = (πn)4 − 2(πn)2p̂0 −
1

2

∫ 1

0
(p(t)− p̂0)2dt + V̂0 − V̂cn +

o(1)

n

as n→∞, where

V = q − p′′

2
, V̂cn =

∫ 1

0
V (t) cos(2πnt)dt, V̂0 =

∫ 1

0
V (t)dt.

Remark. The result holds for complex p, q.
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The Euler-Bernoulli operator

Consider the Euler-Bernoulli operator E given by

Eu =
1

b
(au′′)′′,

u(0) = u(1) = u′′(0) = u′′(1) = 0,

where the coefficients a, b are 1-periodic, satisfy

a, b > 0, a′′′′, b′′′′ ∈ L1(R),

and normalized by the conditions a(0) = 1,
∫ 1
0 (ba )

1
4 dx = 1.
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Theorem (Badanin, Korotyaev, 2015)

The eigenvalues λn of the operator E satisfy

λn = (πn)4 + (πn)2ψ0 + ψ1 − γcn +
o(1)

n
as n→∞,

where ψ0 =

∫ 1

0

5α2 + 5β2 + 6αβ

2ξ
dx > 0, α =

a′

4a
, β =

b′

4b
,

ψ1 =

∫ 1

0

(
(σ2 − ϕ)2

2
−
(σ′
ξ
− ϕ

)2)
ξdx +

ψ2
0

2
, ξ =

(b

a

) 1
4
,

γcn =

∫ 1

0

α′′′(x)− β′′′(x)

4ξ3(x)
cos
(

2πn

∫ x

0
ξ(s)ds

)
dx ,

σ =
α + 3β

2ξ
, ϕ =

1

2ξ

(β − α
ξ

)′
+
β2 − α2

ξ2
.

Remark. If we introduce a variable t =
∫ x
0 ξ(s)ds, then γcn become

Fourier coefficients of the function b
4a(α′′′ − β′′′).
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Thank you for attention!
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