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Transformation operators for the Sturm—Liouville operators

Let T, : L2(0, +00) — L2(0,+00) be the well-known transformation
operator saving the asymptotics at infinity:

d? d? )
W—r()\) Trg:Trd_gzg’ ge H (07+Oo)7
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Transformation operators for the Sturm—Liouville operators

Let T, : L2(0, +00) — L2(0,+00) be the well-known transformation
operator saving the asymptotics at infinity:

d2 d2 )
(d)\z - r(>‘)> Trg = T’Tng’ g€ H (0’ —|—OO),
where r € C1[0, +00) (M L°°(0 )i foS )\] )| dX < oo. Its properties
are given in the book of V. A Marchenko “Sturm-Liouville Operators and
Applications”, 2011. Various transformation operators were studied by
M.Jaulent, C.Jean, E.Ya.Khruslov, B.Ya.Levin, B.M.Levitan, A.Ya.Povzner
and other mathematicians.
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Transformation operators for the Sturm—Liouville operators

Let T, : L2(0, +00) — L2(0,+00) be the well-known transformation
operator saving the asymptotics at infinity:

e e ,
W - r(>\) Trg = Tr@g’ g€ H (0’ +OO),

where r € C*0, +00) (| L=(0, +00) i[5~ )\] )| dX\ < co. Its properties
are given in the book of V. A Marchenko, “Sturm—Liouville Operators and
Applications”, 2011. Various transformation operators were studied by
M.Jaulent, C.Jean, E.Ya.Khruslov, B.Ya.Levin, B.M.Levitan, A.Ya.Povzner
and other mathematicians.

This operator has been extended to the classical Sobolev spaces H=™ =
H=™(R), m=0,1,2 by L.V.Fardigola [SIAM J. Control Optim. 51 (2013),
1781-180], [Mathematical Control and Related Fields 5 (2015), 31-53] and
by K.S.Khalina [Dopovidi Nats. Acad. Nauk. Ukr. (2012), No. 10, 24-29].
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Transformation operator T, : L2(0, +00) — L2(0, +00)
Operator T, transforms each L2(0, +oc)-solution to

£>0,

o = = E A
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Transformation operator T, : L?(0, +00) — L2(0, +00)

Operator T, transforms each L2(0, +c0)-solution to
—v" =12, £>0, (1)
into an L2(0, +00)-solution to

—y"+ &) =pPv,  £>0, (2)
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Transformation operator T, : L?(0, +00) — L2(0, +00)

Operator T, transforms each L2(0, +c0)-solution to
—v" =12, £>0, (1)
into an L2(0, +00)-solution to
Y+ =ptv,  €>0, (2)

under boundary condition Eg “g —1as& — +oo, € C. It is known that
D(T,) = R(T,) = L?(0, +o0), the operator T, is bounded and invertible.
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Transformation operator T, : L?(0, +00) — L2(0, +00)

Operator T, transforms each L2(0, +c0)-solution to
—v" =12, £>0, (1)
into an L2(0, +00)-solution to
Y+ =ptv,  €>0, (2)

under boundary condition Eg “g —1as& — +oo, € C. It is known that

D(T,) = R(T,) = L?(0,+oc), the operator T, is bounded and invertible.
Moreover

(Te) =g+ [ KOOe©)de,  A>0
(T © = O+ [ Lenra >0
13
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Transformation operator T, : L?(0, +00) — L2(0, +00)

Operator T, transforms each L2(0, +c0)-solution to
—v" =12, £>0, (1)
into an L2(0, +oc)-solution to
Y @) =ptv,  E>0, (2)

under boundary condition Eg “g —1as& — +oo, € C. It is known that

D(T,) = R(T,) = L?(0,+oc), the operator T, is bounded and invertible.
Moreover

(Te) =g+ [ KOOe©)de,  A>0
(T © = O+ [ Lenra >0
13

where K and L are well-known kernels of the transformation operator and
its inverse.
Sep. 5-14, 2016 4/ 80



The kernels K and L
The kernel K is defined by the system

Ky, = Kaye = r(n) K, 22y 20,
1 [o.¢]
K(yi,y1) = 5/ r(§) d¢, y1>0 (3)
1
li K - K = >y > 0.
piim K (y) = Kn(y) =0, y22y1 20
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The kernels K and L
The kernel K is defined by the system

Kyiyi — Kyoy, = r(n) K, 22y >0,
1 [o.¢]
Kony) =3 [ rOde  n>0 -
Y1
li K — K = >y > 0.
piim Kn(y) = Kp(y) =0, y22y1 20

Then L € C?({y € R? | y» > y; > 0}) is determined by
Y2
L) +KO)+ [ LnOK(Em)dE =0, pznz0. @
"
or

L(y)+K(y)+/y2 K(y1,§)L(§,y2) d§:07 y22n > 0. (5)

n
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Properties of the kernels K and L |

Lemma ( V.A. Marchenko, “Sturm-Liouville Operators and
Applications”, 2011)

Let K be a solution to (3). Then K € C?>({y € R? | y» > y; > 0}) and

+
|K(y)| < Moog (y12y2), y2>2y12>20

|Kyj(}’)‘ <

1
4

where My > 0, My > 0, and oo(x) = [ °|r(&)| d€, x > 0.

X

r<”;Y2)‘+Mlao (”;yz), 220120, j=12
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Properties of the kernels K and L Il

Lemma

Let K be a solution to (3), L € C?({y € R? | yo» > y; > 0}) satisfy (4) or
(5). Then

L) < Moo (2522

y22y1 20 (8)

1 an aF .
|Lyj(y)|§Z r(y12Y2)’+N100 <y1 2y2)a )/2ZY1ZO,J:1,2,
(9)

where Ng > 0 and N; > 0.
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Classical Sobolev spaces
Let p € NU {0}. Denote

gk
HP = HP(R) = {p € L’(R) Yk =0.p _ g€ ’(R)},

el = (3 (\

k=0

N\ 1/2
L)
L2(R)

dk
dxk
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Classical Sobolev spaces
Let p € NU {0}. Denote

gk
HP = HP(R) = {p € L’(R) Yk =0.p _ g€ ’(R)},

) p N 1/2
loll? = \—w ,
;J | 2y
HP = (HP)",
_ f,
1l stup{'jwff,?' | IISOIIP#O},

d d
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Classical Sobolev spaces
Let p € NU {0}. Denote

gk
HP = HP(R) = {p € L’(R) Yk =0.p _ g€ ’(R)},

) p N 1/2
loll? = \—w ,
; | 2y
HP = (HP)",
_ f,
1l stup{'jwﬁ' | IIsOIIP#O},

d d

Denote by H™ the subspace of all odd distributions in H™, m € Z.
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Extension of T, to H°
Suppose that function r is even extended.
Denote To : H® — HO with the domain D <T0> = HY,

(fog)( )= )\)—i—sgn)\/ K(A,€)g(€)de, AeR, g € D(Ty).
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Extension of T, to HO

Suppose that function r is even extended.
Denote 'T'o - HO - HO with the domain D ('T'O> = HO,

(Tog) () = —i—sgn)\/ K(MLOg(€)de, A€ R, g e D(To).
The operator Tg is invertible and Ty : H* — H°, D ('T'_l) = HO,

(Ta7) © = 79 +sné [ “LIG VAN A, E€R, 7 < DY),
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The adjoint operators for 'T'O and 'T'O_l

For the adjoint operators 1~'(’§ and ('T'O_l)* = ('T'S) - we have
To: HO = 0, D (Tg) = Ao = R((T9)1).

(?Sso)() €)+sgn€/ KO, 1E)e(A) dr, € €R, goGD('T'S),
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The adjoint operators for 'T'O and 'T'gl

~ ~ * ~ \ —1
For the adjoint operators Tj and (Tal) = (T(’;) we have
To: HO = 0, D (Tg) = Ao = R((T9)1).

(?890)() €)+sgn€/ K\, €)e(N) dA, §€R,¢6D('T'{§>,
and (T3) 2 0 A0, D ((F5) ) = Ao = R (T5),
(7)) = v +senn [ ste @ e,

AER, Y €D ((?;;)—1)) .
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Properties of the operator 'T'fj
Theorem

o T is an automorphism of H™, 0 < m < 2;

o = = E A
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Properties of the operator 'T'E‘;
Theorem

o T is an automorphism of H™, 0 < m < 2;
~. \ ~. ([ d?
° (T090) (&) = (To (W -

) 90) () + s £ K,y (0,6)¢(0), o 2

o = = E A
L.V. Fardigola Transformation operators in control problems




Properties of the operator 'T'S
Theorem

° 'T'(’S is an automorphism of ﬁ’", 0<m<<2;

o (Tae) 1= (Ts (532 1) #) O + e Ku0.4(0), w2

To prove the first assertion the estimates for the kernels K and L and their
derivatives are used.
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Properties of the operator 'T'[f‘)
Theorem

° 'T'(’; is an automorphism of ﬁm, 0< m<2;

o (Tae) 1= (Ts (532 1) #) O + e Ku0.4(0), w2

To prove the first assertion the estimates for the kernels K and L and their
derivatives are used.

To prove the second assertion we use equation

Ky — Kyoy, = r()’l)K: y22y1 >0,
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Properties of the operator 'T'E‘;
Theorem

° 1~'3 is an automorphism of ﬁm, 0< m<2;
2

o (Tor) (© = (s (332~ 1) ) (O + sene K 0.050), w2

To prove the first assertion the estimates for the kernels K and L and their
derivatives are used.
To prove the second assertion we use equation

Kyiys — Koy, = r(nn)K, y2 > 31 20,
~ 12
after (Tégo) is calculated: €l
~ "
(Toe) = smn€ [ Kanlhleh)

€]
— o psgnt /0 Ky (M, ED(N) dA.
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Properties of the operator 'T'E‘;
Theorem

° 1~'3 is an automorphism of ﬁ’", 0< m<2;
2

o (Tor) (© = (s (332~ 1) ) (O + sene K 0.050), w2

To prove the first assertion the estimates for the kernels K and L and their
derivatives are used.
To prove the second assertion we use equation

Ky — Kyoy, = rn)K,  y2 > y1 >0,
~ 12
after (ngo) is calculated: €l
~ "
(Toe) = smn€ [ Kanlhleh)

€]
— . ysgné /0 Ky (M, ED(N) dA.

Then, integrating by parts, we prove the assertion.,
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Extension of T, to H2

Denote by T, the operator ('Al:smz)  We have T, : H™2 — H2,
D (f) — A2,

<-T-’g’ 90> - <gﬁ3<ﬁ>, geD ('T',) = H2, pec H.
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Extension of T, to H2

Denote by T, the operator ('T'E‘;mz)  We have T, : H™2 — H2,
D (?) — H2,

<-T-’g’ 90> - <g7f390>, geD ('T',) —H2 pe 2
Then 7,2 = ((T3) e ) and T2 A2 2 0 () <A

(F72.0) = <g, <?3)_1¢>, FeD (T =A% veh,
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Properties of the operator 'T',

Theorem

o T, isan automorphism of H™ —2<m<2;

o = = E A
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Properties of the operator T,

Theorem

° 'T'r is an automorphism of ﬁ’", —-2<m<2;

o - - e ,
if g € HY and g(+0) exists;
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Properties of the operator T,

Theorem
° 'T'r is an automorphism of ﬁ’", —2<m<2;
d? ~ ~ o~ )
° (W _ r) (T,g> ) (T,g) (+0)8' = T, (d—gzg — 2g(+0)5 )
if g € HY and g(+0) exists;
o T,8/ =6
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Transformation operators for differential operators with
variable coefficients

Let us construct an operator S such that

ﬁ(k(x)(Sg)')/:S(g”)—i— @ and S:HZ2= (@),

where p, k € C}(R) are positive on R.
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Transformation operators for differential operators with

variable coefficients
Let us construct an operator S such that
ﬁ (k(x)(Sg)) =S+ @ and S:H?2= (D),
where p, k € C}(R) are positive on R.
Let 1 = (kp)'/%, n € C*(R), 0 = (k/p)*/*,

X d“
o(x) = X ER, o(x) = +00 as x — 400,
= [ (x)

d 17
Dy =62 —+ = ).
" (dx+n>
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Transformation operators for differential operators with

variable coefficients
Let us construct an operator S such that
ﬁ (k(x)(Sg)) =S+ @ and S:H?2= (D),
where p, k € C}(R) are positive on R.
Let 1 = (kp)'/%, n € C*(R), 0 = (k/p)*/*,

X d“
o(x) = X ER, o(x) = +00 as x — 400,
= [ (x)

d 17
Dy =62 —+ = ).
" (dx+n>

/
Likey = D2y - (Dng (92"—» f.

P n
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Observations

Let f, g, ¢, 1 € C?(R) be functions such that the following integrals are
converging. Denote

s0=50w=¢;0, V=S5 tp=(np)oo L.
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Observations

Let f, g, ¢, 1 € C?(R) be functions such that the following integrals are

converging. Denote

Y(o(x)) 7 (x)

sozsowz‘”;”, =Syl =
We have
o (g,¢) = / g(\)(A) dA
B /w g(o(x))
o 77(X)

where ((f, ) = [0 F(x)p(x )02( )

L.V. Fardigola Transformation operators in control problems

(X) 62(x)

dx = ((Sog So¥)),
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Observations
Let f, g, ¢, 1 € C?(R) be functions such that the following integrals are

converging. Denote
@z&ﬂbzwzay b=S5"p=np)oo
We have
o @v)= [ g ax
_ [ gle() vlo()) P (x)
-/ i) ) ) (ove: 0w
where ((f, ) = [Z2_ f(x)p(x )92(
(Fot - 2T ’+"—¢°"> - V00 s (w);

o ——5n
n non n

-1

4 Dn9501/J = 92
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Observations

Let f, g, ¢, 1 € C?(R) be functions such that the following integrals are
converging. Denote

w0 =S = vo 0,
We have
o (g,0) = / g(V)B(N) dA

T ) v P
-/ g 1) () & = (o8 S0

where ((f, ¢ f, f(x)e (X)92(

n
o (Daof ) = (( n950 Solf so>> (S0 (S0 1) - So(Sp "))
= ((Sa )50 0) = ~(S0F (S0 ')
—{(So(551), S0 ((S6 ")) = = (F Do)

V=S5 tp=(np)oo L.
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Spaces H™

Operator S and spaces H™ are introduced and investigated by
L.V.Fardigola [Mathematical Control and Related Fields (MCRF) 5 (2015),
31-53].
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Spaces H™

Operator S and spaces H™ are introduced and investigated by
p

L.V.Fardigola [Mathematical Control and Related Fields (MCRF) 5 (2015),
31-53].

Let us introduce the modified Sobolev spaces H™ and compare them with
the classical Sobolev spaces H™, m = -2, 2.
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Spaces H™

Operator S and spaces H™ are introduced and investigated by
L.V.Fardigola [Mathematical Control and Related Fields (MCRF) 5 (2015),
31-53].

Let us introduce the modified Sobolev spaces H™ and compare them with
the classical Sobolev spaces H™, m = —2,2.

Let L2,(R) is the space with the norm

902,y = \/ i "72(X§dx, b e 12(R)
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Spaces H™

Operator S and spaces H™ are introduced and investigated by
L.V.Fardigola [Mathematical Control and Related Fields (MCRF) 5 (2015),
31-53].

Let us introduce the modified Sobolev spaces H™ and compare them with
the classical Sobolev spaces H™, m = -2, 2.

Let L%G(R) is the space with the norm

1902,y = \/ [ e e ey

and the inner product

e = [ a0 o v € o),

—0o0

Denote by (f, ) and {(g, 1)) the value of distributions f € Hy? and
g € HP, respectively, on test functions ¢ € H and ¢ € HP, respectively.
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Spaces H™

Operator S and spaces H™ are introduced and investigated by
L.V.Fardigola [Mathematical Control and Related Fields (MCRF) 5 (2015),
31-53].

Let us introduce the modified Sobolev spaces H™ and compare them with
the classical Sobolev spaces H™, m = -2, 2.

Let L%G(R) is the space with the norm

1902,y = \/ [ e e ey

and the inner product

e = [ a0 o v € o),

—0o0

Denote by (f, ) and {(g, 1)) the value of distributions f € Hy? and
g € HP, respectively, on test functions ¢ € H and ¢ € HP, respectively.
Let p=0,1,2.
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Spaces H™

Classical Sobolev spaces

HP = {p € L*(R) |

_ gk
) i dk 2 1/2

el = P ,

k=0 dxk L2(R)
H™P = (HP)",

f, ol

f p—sup{|< gop#O}
1] ol | el

d d

L.V. Fardigola Transformation operators in control problems

Modified Sobolev spaces

HP = {1/) € LlOC(R) |

Vk =0,p Dyt € Lig(R)},
1/2
& (R)) ’

lgll* = sup { |<<|]w[|f’»| | v # 0}

04t = (3 (ot

k=0

HP = (),

<<D779g? w» = <<g7 Dn0¢>> y P ?é 2.
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Operator Sy

Together with the spaces H™ consider the operator S. First, consider an
auxiliary operator S : H® — HO, D(S) = H°,

Sot) = 1”;“7 ¥ € D(So)

where ¢ o o in the composition of ¥ i 0, i.e., (¥ o 0)(x) = ¥(o(x)), x € R.

L.V. Fardigola Transformation operators in control problems
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L.V. Fardigola Transformation operators in control problems

Operator Sy

Together with the spaces H™ consider the operator S. First, consider an
auxiliary operator S : H® — HO, D(S) = H°,

Sot) = 1”;“7 ¥ € D(So)

where ¢ o o in the composition of ¥ i 0, i.e., (¥ o 0)(x) = ¥(o(x)), x € R.
By construction, the operator Sg is invertible, Sy* : HO — H,
D(Sg") =H°,

Sole =(mp)oa, e D(SY).
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Properties of the operator Sy

We have

Theorem (L.V.Fardigola, (MCRF) 5 (2015), 31-53)
o DSt = So(¥'), ¥ € HY,

o = = E A
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Properties of the operator Sy

Theorem (L.V.Fardigola, (MCRF) 5 (2015), 31-53)
We have
o DSt = So(¥'), ¥ € HY,

@ The operator Sy is an isometric isomorphism of H™ and H™,
m=0,1,2.
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Operator S

By using this theorem, we extend the operator Sg to H~2. Denote this
extension by S. We have S : H=2 — H~2, D(S) = H~2,

(Sg,¢) = (g.S5 %), g€ D(S), p € D(Sy*) NH? = H.
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Operator S

By using this theorem, we extend the operator Sg to H~2. Denote this
extension by S. We have S : H=2 — H~2, D(S) = H2,

(Sg, o) = (8,85 p), g€ D(S), p€D(SyY)NH? =H2.
Evidently, S is also invertible, S™1 : H=2 — H=2, D(S™1) = H?,

(ST, ) = ((F, Sy, feD(S™), ¥ e D(So) N H? = H?.
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Properties of the operator S

Theorem (L.V.Fardigola, (MCRF) 5 (2015), 31-53)

@ S is an isometric isomorphism of H™ and H™, —2 < m < 2;

o = = E A
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Properties of the operator S

Theorem (L.V.Fardigola, (MCRF) 5 (2015), 31-53)
@ S is an isometric isomorphism of H™ and H™, —2 < m < 2;
© Dy(Sg)=S(g'), gcH", -1<m<2;
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Properties of the operator S

Theorem (L.V.Fardigola, (MCRF) 5 (2015), 31-53)
@ S is an isometric isomorphism of H™ and H™, —2 < m < 2;
© Dyp(Sg)=S(g'), g€ H™ -1<m<2
° (g,9)=(Sg,SyY), ge H ™M peH™ 0<m<2
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Properties of the operator S

Theorem (L.V.Fardigola, (MCRF) 5 (2015), 31-53)
@ S is an isometric isomorphism of H™ and H™, —2 < m < 2;
© Dyp(Sg)=S(g'), g€ H™ -1<m<2
° (g,9)=(Sg,SyY), ge H ™M peH™ 0<m<2
e S0 =n(0)d.
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Properties of the operator S

Theorem (L.V.Fardigola, (MCRF) 5 (2015), 31-53)
@ S is an isometric isomorphism of H™ and H™, —2 < m < 2;
© Dyp(Sg)=S(g'), g€ H™ -1<m<2
° (g,9)=(Sg,SyY), ge H ™M peH™ 0<m<2

e S5 =n(0)d.
In particular,
1
5 (k(Sg)’ ) = D29$g —vSg =S(g") - vSg
where v = < )
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Space D

Let D be the space of infinitely differentiable functions with compact
supports, where

Ja > 0Vn=1,00 suppy, € [—a, 4]

(m)

©n—0asn— oo iff
Vm=1,00 ¢, =20asn—ocoonR

Let D’ be the dual space with weak convergence.
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Space &

Let S be the Schwartz space of rapidly decreasing functions on R, i.e.

§= {go € C®°(R) | Vk = 0,00 ¥Ym = 0,00 sup{‘xkcp(m)‘ | x € R} < oo}
where

¢n—0asn— oo iff Yk =0,00Vm=0,00xo™ = 0as n — coonR.

Let 8’ be the dual space of tempered distributions (with weak convergence).
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Properties of the classical Sobolev spaces H™

Theorem (S.G. Gindikin and L.R. Volevich, “Distributions and
convolution equations”, 1992)

@ H™ C H" is a dense embedding, —2 < n < m < 2.

o = = E A
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Properties of the classical Sobolev spaces H™

Theorem (S.G. Gindikin and L.R. Volevich, “Distributions and
convolution equations”, 1992)

@ H™ C H" is a dense embedding, —2 < n < m < 2.
e D C 8 C H™ are dense embeddings, —2 < m < 2.
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Properties of the classical Sobolev spaces H™

Theorem (S.G. Gindikin and L.R. Volevich, “Distributions and
convolution equations”, 1992)

@ H™ C H" is a dense embedding, —2 < n < m < 2.
e D C 8 C H™ are dense embeddings, —2 < m < 2.
o H™ c 8 C D’ are dense embeddings, —2 < m < 2.
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Properties of the modified Sobolev spaces H™

Theorem (L.V.Fardigola, (MCRF) 5 (2015), 31-53)

e H™ C H" is a dense embedding, —2 < n < m < 2.

o = = E A
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Properties of the modified Sobolev spaces H™

Theorem (L.V.Fardigola, (MCRF) 5 (2015), 31-53)
e H™ C H" is a dense embedding, —2 < n < m < 2.

o D C H™ is a dense embedding, —2 < m < 2.

o = = E A
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Properties of the modified Sobolev spaces H™

Theorem (L.V.Fardigola, (MCRF) 5 (2015), 31-53)
e H™ C H" is a dense embedding, —2 < n < m < 2.
o D C H™ is a dense embedding, —2 < m < 2.
e H™ C D’ is a dense embedding, —2 < m < 2.
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Properties of the modified Sobolev spaces H™

Theorem (L.V.Fardigola, (MCRF) 5 (2015), 31-53)
e H™ C H" is a dense embedding, —2 < n < m < 2.
o D C H™ is a dense embedding, —2 < m < 2.
e H™ C D’ is a dense embedding, —2 < m < 2.

It is shown by examples that relations between H™ and 8§ depends on k
and p.
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Examples

Let k =p. Thenn =/p, 0 =1, o(x) = x,

o = = E A
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Examples

Let k =p. Thenn =/p, 0 =1, o(x) = x,
n,_
990—7790»

o = = E A
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Examples

Let k =p. Thenn =/p, 0 =1, o(x) = x,
990:7790
9 )

I1p

/
n
g Do =11 (90' + 590) =n¢' +n'p = (ne)

o = = E A
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Examples
Let k =p. Thenn =/p, 0 =1, o(x) = x,

Q¢ZW<P
9 ?

/
n n
g Doy = (90’ + ?0) =n¢' +n'¢ = (ne) ,

gpﬁew = 0Dy (%(mp)’) =1 ((%(mp)')/ + %/%(W)')

) (%(W)” - Z—;(w)' n %/%(W)') — (ng)".
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Examples
Let k =p. Thenn =/p, 0 =1, o(x) = x,

ESOZWQO
9 )

/
n n
g Doy = (so’ + ?0) =n¢' +n'¢ = (ne) ,

1 1 !
12y = Tﬂ?e<—n<p’)=n(<—mp’) +——n90)
7 Do n ,,7( ) n( ) nn( )
1 /i n/ ! 7]/1 I) i
=n(=(mp)" — Sne) +—==(ne) ) = (ne)".
(n() Loy + L) ) = ()
Therefore
feH" & /ppeH, m=-2,2.
Hp_{¢€L|oc( ) | Vk =0, PDk9¢EL9(R)}
H-P = (HP)*, p=0,1,2.
N




Examples

Thus, the following assertions hold

o Let p(x) = coshx, x € R. Then f € H™ iff v/coshxf € H™,
m = —2,2. Therefore, § ¢ H? and H? ¢ §'.
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Examples

Thus, the following assertions hold

o Let p(x) = coshx, x € R. Then f € H™ iff v/coshxf € H™,
m = —2,2. Therefore, § ¢ H? and H? ¢ §'.

o Let p(x) =1/coshx, x € R. Then, f € H™ iff f/\/coshx € H™,
m = —2,2. Therefore, S C H? i H 2 C §'.
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Examples

Thus, the following assertions hold

o Let p(x) = coshx, x € R. Then f € H™ iff v/coshxf € H™,
m = —2,2. Therefore, § ¢ H? and H? ¢ §'.

o Let p(x) =1/coshx, x € R. Then, f € H™ iff f/\/coshx € H™,
m = —2,2. Therefore, S C H? i H 2 C §'.

o Leta € R, p(x) =(1+x3)2, x € R. Then, f € H™ iff
(1 +x2)%f € H™ ie., f € HT, m= —2,2. Therefore,
SCH2CH?CH?C H;?2c§.
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Examples

Let o € R, k(x) = (1 +x2)aT+1, p(x) = (1 +x2)aTl, x € R. Then, n(x) =
(1+x3)%, 6(x) = (1 +x2)%, o(x)=In{x+vV1+x?), xR

o = = E A
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Examples

Let a € R, k(x) = (1+x2)°2, p(x) = (1 +x2)“T, x € R. Then, 5(x) =
(1+x3)%, 6(x) = (1 +x2)%, a(x)=1In (x+ V1 +x2>, x € R. We have

gso =1+,

a a=3 atl
oD =8(np) = Sx(1+7) T+ (147,

n 02 . 2 o a - 9y a=5
o Do = 9 Do <g(nw)’) =0 (6*(nv)’) —5(1+§x)(1+x) Ty
_|_

at3

e+ X1+ T + (140 g
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Examples

Since

HP = {¢ € [2_(R) | Vk =
H~P = (HP)*, p=0,1,2

91/’ € L o(R)},

o = = E A
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Examples

Since

HP = {4 € L}, (R) | Vk = 0,p Djyyp € L25(R)},
H-P = (HP)*, p=0,1,2

we have
peH® & (142)°F ¢ € H;
pecH & (1 —i—xz)aT_lgp € Hp and (1 +x2)aT+l<p’ € Ho;
p M2 & (1+x2)°T ¢ € Hyand (1+x%)" ¢’ € Ho
and (1 —i—xz)aTHcp" € Hp.
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Operator T

Consider the operator T : H"2 — H~2, D(T) = H2, T = ST,.

o = = E A
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Operator T

Consider the operator T : H"2 — H~2, D(T) = H2, T = ST,.
Theorem

o T isan isomorphism of H™ and H™, =2 < m < 2;

o = = E A
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Operator T

Consider the operator T : H"2 — H~2, D(T) = H2, T = ST,.

Theorem

o T is an isomorphism of H™ and H™, =2 < m < 2;

2 Mo 5,2 s d? /
o (D3 — o) Tg - 2(0)(Te)(+0)Dd = T ( 56— 26(+0)3

if g € H® and g(+0) exists;
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Operator T

Consider the operator T : H"2 — H~2, D(T) = H2, T = ST,.
Theorem
o Tisan isomorphism of H™ and H™, —2 <m<2;
~ ~ ~ [ d?
o (D3 - ro0) Te — 22(0)Te)(40)Dy0b =T ( gz~ 26(+0)7),

if g € H® and g(+0) exists;
o T&' = 1(0)Dyg0.
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—w" = p?w, L[?(0,+o0)-solutions J

Ug

T=ST, || —y'+ry= u?y, L2(0,+o0)-solutions J

5J

—%(kz’)’ = 12y, L7279(0, —|—oo)-so|utionsJ

peCor= Dy (02%)) oo = (ko)V/*, 0= (k/p)*,

o) = J5 gy Do = 0% (& + 1),
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Linear control systems

input CONTROL output
(control) SYSTEM l

d
d—";' —Aw+ Bu,  te(0,T), (10)

where T >0, w: [0, T] — H is a state of system, u: (0, T) - His a
control, H, H are Banach spaces, A: H — H, B: H — H are linear
operators.
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Null-controllability problems for the wave equation

Null-controllability problems for the wave equation on domains
bounded w.r.t. space variable:

C. Castro, L.V.Fardigola, H.O.Fattorini, M.Gugat, V.A.llin, W.Krabs,
G.Leugering, K.S.Khalina, V.I.Korobov, J.-L.Lions, E.I.Moiseev, Y. Liu, J.
Sokolowski, D.L. Russel, G.M.Sklyar, J.Vancostenoble, X.Zhang, E.Zuazua,
and many others.
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Null-controllability problems for the wave equation

Null-controllability problems for the wave equation on domains
bounded w.r.t. space variable:

C. Castro, L.V.Fardigola, H.O.Fattorini, M.Gugat, V.A.llin, W.Krabs,
G.Leugering, K.S.Khalina, V.I.Korobov, J.-L.Lions, E.I.Moiseev, Y. Liu, J.
Sokolowski, D.L. Russel, G.M.Sklyar, J.Vancostenoble, X.Zhang, E.Zuazua,
and many others.

Null-controllability problems for the wave equation on domains
unbounded w.r.t. space variable:

A.Avetisyan, M.l.Belishev, L.V.Fardigola, K.S.Khalina, A.Khurshudyan,
G.M.Sklyar, A.F.Vakulenko.
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Classical Sobolev spaces
Let p € NU {0}, Q be a domain in R. Denote

_dk
HP(Q) = {p € L*(Q) | Yk =0,p kP E L*(Q)},

lello = i (

k=0

1/2

2
L%Q)) ’

dxk
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Classical Sobolev spaces
Let p € NU {0}, Q be a domain in R. Denote

_dk
HP(Q) = {p € L*(Q) | Yk =0,p Pl ls L*(Q)},

, o\ 1/2
llellg = ( (0 ) :
- (5 (1], )

“5(Q) = (HP(Q))",
IIfHQ"—sup{‘(, [lelP # 0}

dk
dxk

(H
;o)

ollP
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Classical Sobolev spaces
Let p € NU {0}, Q be a domain in R. Denote

d
HP(Q) = {p € L3(Q) | Yk = P €
P k
d
lellq =
? kZ:O ok L2(n)

Q) = (H(Q))".
IFlla? = p{‘j, Hp>‘||| ||P7éo}

(ZFf,p), is the value of the distribution f € Hg” on the test function
¢ € HS.
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Classical Sobolev spaces

Denote H™ = H™(R), ||| = [I1lg" () = (e

o = = E A
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Classical Sobolev spaces

We have

Denote H™ = H™(R), ||| = [IMlg" () = (- e

d d
(o) == (raee)

o = = E A
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Classical Sobolev spaces

Denote H™ = H™(R), [|-|" = [l-I€, () = (- )&

We have J J
(a9) =~ {rgee)

Denote by H™ the subspace of all odd distributions in H™, m € Z.
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Spaces H™ and H,,

Let p € NU {0}.
Sobolev spaces H™

Vk=0,p kP E
P k
d
b = (3
k=0
H™P — (HP)*,
] 7, 2]
Hﬂlpzﬂm{
TolP

H™c H', m>1.

L.V. Fardigola Transformation operators in control problems

www¢o}

Sobolev spaces H,

Ho = {yp € L*(R) |

Vk =0,p x*¢ € L*(R)},
bl = (3 ] )

H—P = (HP)*v
{|<f 2
lell?

Hp © Hyy m> 1.

1777 = su IHIP#O}
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Spaces H™ and H,,

Let p € NU {0}.
Sobolev spaces H™

Vk=0,p kP E
p k
d
b = (3
k=0
H™P — (HP)*,
] (F,0)
Hﬂlpzﬂm{
Tl

H™c H', m>1.

www¢o}

Sobolev spaces H,

Ho = {yp € L*(R) |

Vk =0,p x*¢ € L*(R)},
lel, = <§1hwu)

H—P = (HP)*v
{|<f 2
lell?

Hp © Hyy m> 1.

1777 = su IHIP#O}

Denote by H,, the subspace of all odd distributions in H,,, m € Z.
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Fourier transform of H™ and H,,

Fero)(0) = [

e 7 p(x) dx,
—0o0

¢ € H° = Hy = L*(R),

o = = E A
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Fourier transform of H™ and H,,

Fero) @)= [ e plx) o
(F,5) (x) = / h

o € H® = Hy = L*(R),
ey (o) dx,

Y € H® = Hy = L%(R),

o = = E A
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Fourier transform of H™ and H,,

(Frsso) (0) = / - e 7% p(x) dx, o € H® = Hy = L*(R),
(F 1) (x) = / ) " y(0) dx, ¥ € H = Ho = [*(R),

<fFf7(p> = <f7 ?_190>7
(feH Pand ¢ € HP) or (f e H-p and ¢ € H,), p € NU{0}.
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Fourier transform of H™ and H,,

(Frsso) (0) = / - e 7% p(x) dx, o € H® = Hy = L*(R),
(F 1) (x) = / ) " y(0) dx, ¥ € H = Ho = [*(R),

<fFf7(p> = <f7 9_190%
(feH Pand ¢ € HP) or (f e H-p and ¢ € H,), p € NU{0}.

Theorem J

For each m € 7Z the operator & is an isometric isomorphism of H™ and H,,.
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Null-controllability problems

Let 4l be a set of permissible controls.
Definition

A state w0 is called approximately null-controllable at a free time if
Ve > 0 there exist T. > 0 u. € 4l such that a solution w of system (14)
satisfies two conditions:

w(0) =wP and ||w(T)|| <e.

(ue, Te)
wO @
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Null-controllability problems for the wave equation with
constant coefficients
We consider the following controllability problem

Wit = Wxx — q2W7 x>0, te(0,7),

o = = E A
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Null-controllability problems for the wave equation with
constant coefficients

We consider the following controllability problem

Wit = Wax — G°w, x>0, t € (0, T), (11)

w(0,t) = u(t), te(0,T), (12)
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Null-controllability problems for the wave equation with
constant coefficients

We consider the following controllability problem

Wit = Wax — G°w, x>0, t € (0, T), (11)

w(0,t) = u(t), te(0,T), (12)

we(x,0) = wi(x) we(x, T) = wy (x)

w(x,0) = wp (x )}_}{ w(x, T) = wg (x)
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Null-controllability problems for the wave equation with
constant coefficients

We consider the following controllability problem

Wit = Wiy — q2W, X > 0, t e (05 T)7 (11)

w(0,t) = u(t), te(0,T), (12)

we(x,0) = wi(x) we(x, T) = wy (x)

w(x,0) = WS(X)} R { w(x, T) = wq (x)

0
where T >0, ¢ >0, w: [0, T] = H°(0, +o0), w° = (:ﬁ.) c
0

T
H°(0, +00) x H71(0, +00), w' = (:%—) € H°(0, +00) x H71(0, 4-00).
1

We also assume that u € 4l = L°°(0, T) is a control.
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Reduced control problem

Let w(-,t), w®, w’ be the odd extension for <W(" t
Wt('v t

) ()

resp., (t € [0, T]). Then Zow : [0, T] - HP, p=0,1, where

H™ = H™ x H™ 1 with the norm ||-|™, m € Z.
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Reduced control problem

) 0 T
Let w(-,t), w®, w” be the odd extension for <W( ’t)), (W0>, (WO )

Wt('v t) WZ?
resp., (t € [0, T]). Then Zow : [0, T] - HP, p=0,1, where
H™ = H™ x H™ 1 with the norm ||-|™, m € Z.

Our controllability problem can be reduced to the following one

w 0 1
Cil_t: ((di)z—q2 0>w—<25,(zx)>u, xeR,te(0,7), (14)
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Reduced control problem

) 0 T
Let w(-,t), w®, w” be the odd extension for <W( ’t)), (W0>, (WO )

Wt('v t) Wi)
resp., (t € [0, T]). Then Zow : [0, T] - HP, p=0,1, where
H™ = H™ x H™ 1 with the norm ||-|™, m € Z.

Our controllability problem can be reduced to the following one

w 0 1
Cil_t: ((di)z—q2 0>w—<25,(zx)>u, xeR,te(0,7), (14)

w(-,0) = wl — w(-, T)= w', (15)
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Reduced control problem

Let w(-, t), w?, w’ be the odd extension for < wl(: ’t)> (W(?). <W0;>.
( ) t) W

resp., (t € [0, T]). Then Zow : [0, T] - HP, p=0,1, where

H™ = H™ x H™ 1 with the norm ||-|™, m € Z.

Our controllability problem can be reduced to the following one

w 0 1
CiTt B ((5)2— 7 0) v (25’%)) ooxeRee@ T, )

w-,0)=w? s w(-, T)=w’, (15)

where § is the Dirac distribution, § = H', H is the Heaviside function:
H(¢) =1if £ > 0, and H({) = 0 otherwise.
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Reduced control problem

0 T
Let w(-, t), w?, w’ be the odd extension for w(t) WO , WOT ,
( ) t) Wy
resp., (t € [0, T]). Then Lw : [0, T] = H™P, p=0,1, where

dtp
H™ = H™ x H™=1 with the norm ||-|, m € Z.
Our controllability problem can be reduced to the following one

w 0 1
CiTt B ((5)2— 7 0) v (25’%)) ooxeRee@ T, )

w-,0)=w? s w(-, T)=w’, (15)

where § is the Dirac distribution, § = H', H is the Heaviside function:
H(¢) =1if £ > 0, and H({) = 0 otherwise.

Further we consider the approximate null-controllability problem for the
system (14) where w® € H? and w’ € HP are odd functions.
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Fourier transform of the control system

Denote y(-, t) = Fxrso (w(-, t) ) yo =Wl y" = Fw’. Evidently,
Wt('a t) _ B
dt,,,y [OT]—)H ><Hm 1, m —OlyoeHoxH_land

T € Hy x H_1. Here Hpy = Hpy X Hm_1 with the norm I, m € Z.
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Fourier transform of the control system

Denote y(-, t) = Fxrso (‘:Iv((, t))> yo =Wl y" = Fw’. Evidently,
t\"
dt,,,y [O T]—>H ><Hm 1, m —0,1,y eﬁoxﬁ_land

yT € Hy x H_1. Here Hp, = Hpy X Hm_1 with the norm |- Il meZ.

Applying to (14), (15) Fourier transform w.r.t. £, we obtain

Ye = (_020_ 7 (1J> y— \/g <i03(t)> ,o0€eR te(0,T), (16)
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Fourier transform of the control system

Denote y(-, t) = Fxrso (\:Iv((, t))) yo =Wl y" = Fw’. Evidently,
t\"
dt,,,y [O T]—>H X Hm 1 m—O,l,y € ﬁo X ﬁ_l and

yT € Hy x H_1. Here Hp, = Hpy X Hm_1 with the norm |- Il meZ.

Applying to (14), (15) Fourier transform w.r.t. £, we obtain

Ye = (_020_ 7 (1J> y— \/g <i03(t)> ,o0€eR te(0,T), (16)

Y(Uvo) = yO(U) - Y(U’ T) = yT(U)v o eR, (17)
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Solutions to (16), (27)
We have

an(t/a75 )
TO'— o 00__ E T - 02+q2
Vo) =260 [ %) -2 | Ve

(t\/m

o = = E A
L.V. Fardigola Transformation operators in control problems
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u(t) dt



Solutions to (16), (27)

We have
o [ _en(E)
y(0) = Ee0) | ¥o) -2 [ Ve | ue)d

cos (l“\/a2 + qz)

in(ty/024q2
cos (t o2+ q2) M
where X (o, t) = Voi+q?

—+/02 + g?sin (1.“\/02 + q2) cos (1.“\/02 + qz)

i
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Solutions to (16), (27)

We have

R eara)
(o) =200 [0 -2 | Ve | u(e)de

cos (l“\/a2 + qz)

H / ~2 2
cos (t\/m) sm(t— %;q)

—+/02 + g?sin (t\/a2 + q2) cos (1.“\/02 + q2>

where X (o, t) =

We have

1/q ifg>0

. teR
2V1+t2 ifg=0

I=C 8)xllo < l
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Operators ¥V and 0

Denote W : HO —3 HO with D(W) = ﬁg such that

o(00) (V777 )
N

(Vg) (x) = T2, (x), &€ D).
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Operators ¥V and 0

Denote W : HO —3 HO with D(W) = ﬁg such that

o(00) (V777 )

(Vg) (x) = 5,1, ( N ) (x), geDV).

Denote W : HO — H~1 with D(V) = H° such that
d

(Ve) () = 7,5 ((F(sene)) (VA2 +@)) (). g € D).

L.V. Fardigola Transformation operators in control problems
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Operators ¥V and 0

Denote W : HO —3 HO with D(W) = ﬁg such that

o(00) (V777 )

(Vg) (x) = 5,1, ( N ) (x), geDV).

Denote W : HO — H~1 with D(V) = H° such that
d

(Ve) () = 7,5, ((Fsene)) (Vo2 + @) ) (x). g € D).

Evidently, if g = 0, then W =Id, W = %(sgn(-)).

L.V. Fardigola Transformation operators in control problems
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Therefore
W) =wlx, T) = £ )+ [ = (g ) 00 9

where U(t) = u(t)(H(t) — H(t — T)) — u(—t)(H(t + T) — H(-1t)),
t € (0,400), * is the convolution with respect to x.
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Therefore
W) =wlx, T) = £ )+ [ = (g ) 00 9

where U(t) = u(t)(H(t) — H(t — T)) — u(—t)(H(t + T) — H(-1t)),
t € (0,400), * is the convolution with respect to x.
Here

E _ 1 F-1 a/0t 1\ sin(ty/02 + q?)
(X’t)_ﬁ 7 ((a/at)2 a/at) NCEY
1
2

=3 (jore ojor) [sne (€ =) (o —2)
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Therefore

wi(x)=w(x,T)=E(x, T)* [wo(x) - <$Z> (X):| (18)
where U(t) = u(t)(H(t) — H(t — T)) — u(—t)(H(t + T) — H(-1t)),
t € (0,400), * is the convolution with respect to x.
Here

E(x.t) = 1 g1 d/0t 1\ sin(t\/o? + q?)
0= 755 (jonr oo Ncar

=5 (o/oer ojor) [ent H(E =) o (Ve =2)]

o —1 P X 2 +k
where Jy =32, m (%)

Euler gamma function).

is the Bessel function (here I is the
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Since the Fourier transform operator F is an isomorphic isomorphism of
H™ and Hp,,

we have

1/q ifg>0

E-,t*og
IEC, t)«] WITE ifq—0

., teR.
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Uniqueness and well-posedness

Remark [t is well known that the solution to problem (14), (15) is unique.

o = = E A
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Uniqueness and well-posedness

Remark [t is well known that the solution to problem (14), (15) is unique.

Remark One can see that

(2N < o) (1P + Wl e

where Q(T) > 0. Therefore, problem (14), (15) is well posed.
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Null-controllability problems at a free time

According to definition,

a state w® € HY is approximately null-controllable at a free time iff

VneN3T,>03u, € L0, T,) [w'(-, T)I°<1/n,  (19)
where w” is the solution of (14), (15) with T = T, and u = u,,.
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Null-controllability problems at a free time

According to definition,
a state w® € HY is approximately null-controllable at a free time iff

VneN3T,>03u, € L0, T,) [w'(-, T)I°<1/n,  (19)

where w” is the solution of (14), (15) with T = T, and u = u,,.
Put Up(t) = un(t)(H(t) — H(t — T,)) — up(—t)(H(t — T,,) — H(t)), n € N.
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Null-controllability problems at a free time

According to definition,
a state w® € HY is approximately null-controllable at a free time iff

VneN3T,>03u, € L0, T,) [w'(-, T)I°<1/n,  (19)

where w” is the solution of (14), (15) with T = T, and u = u,,.

Put Up(t) = up(t)(H(t) — H(t — Tp)) — up(—t)(H(t — T,,) — H(t)), n € N.
Condition (19) is equivalent to

suppUn C [—Th, Th)
VneN3IT, >0 33U, € HONL®(R) { wf= VU, —w]as n— oo,

wi = WU, —wd as n — oo
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Null-controllability problems at a free time

According to definition,
a state w® € HY is approximately null-controllable at a free time iff

VneN3T,>03u, € L0, T,) [w'(-, T)I°<1/n,  (19)

where w” is the solution of (14), (15) with T = T, and u = u,,.

Put Up(t) = up(t)(H(t) — H(t — Tp)) — up(—t)(H(t — T,,) — H(t)), n € N.
Condition (19) is equivalent to

suppUn C [—Th, Th)
VneN3IT, >0 33U, € HONL®(R) { wf= VU, —w]as n— oo,
wf:\/l}u,,—>w?asn—>oo

B, To) +wlx To) = w0) = () () |
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qg=0: )

Difference between the cases g = 0 and g > 0

w8=\|!Z/l,,=Z/l,,—>w8asn—>oo

w] = Wi, = (sgn(-)Uy) — w as n — oo
Nl

(sgn(-)wd)’

o = = E A
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qg=_0: J

Difference between the cases g = 0 and g > 0

w8=\|!Z/l,,=Z/l,,—>w8 as n — 0o
w] = Wi, = (sgn(-) Uy) — w?
qg>0: J

7asn— oo
N
(sgn(-) wj)

o = = E A
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Properties of the operators W and 0
o (?g) (Vaz + q2>
Vol + ¢

(98) (0 = 252, (5 (sané ) (Vo2 £ &) ) (). & € D(¥) = A

(Vg) (x) = T2, ( ) (x), geD(W)=H
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Properties of the operators W and 0
(1) (/5759)
Vo2+q?
(¥6) (0= 55,4 (7 sence)) (Vor + ) (x), &  D(F) = B

Forg=0 W=Id V= %(sgn(-)), and their properties are evident.

(Vg) (x) = T2, ( ) (x), geD(W)=H
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Properties of the operators W and 0
7 (?g) ( 02 + q2> D(V) = HO
0_2 ¥ q2 (X)’ g € ( ) - )

(98) (0 = 252, (5 (sané ) (Vo2 £ &) ) (). & € D(¥) = A

Forg=0 W=Id V= %(sgn(-)), and their properties are evident.

(Vg) (x) = T2, (

Theorem
Let g > 0.
o Vand W are bounded:

v
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Properties of the operators W and 0
7 (?g) ( 02 + q2> D(V) = HO
0_2 ¥ q2 (X)? g € ( ) - )

(98) (0 = 252, (5 (sané ) (Vo2 £ &) ) (). & € D(¥) = A

Forg=0 W=Id V= %(sgn(-)), and their properties are evident.

(Vg) (x) = T2, (

Theorem
Let g > 0.
o Vand W are bounded:

o R(W) = H° and R(V) = H!;

v
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Properties of the operators W and 0
7 (?g) ( 02 + q2> D(V) = HO
0_2 ¥ q2 (X)? g € ( ) - )

(98) (0 = 252, (5 (sané ) (Vo2 £ &) ) (). & € D(¥) = A

Forg=0 W=Id V= %(sgn(-)), and their properties are evident.

(Vg) (x) = T2, (

Theorem
Let g > 0.
o Vand W are bounded:
(W) = HO and R(V) = H!;
() = {g e | e C[-q.dl}:

o R
o N
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Properties of the operators W and 0
o Vo2 + g2

(?g%ﬁqf ’ >> (). &eDW) =,
(9e) 00 = 2575 (7 (senee)) (VoI + ) ) (x), & € D) = .

Forg=0 W=Id V= %(sgn(-)), and their properties are evident.

(Ve) (x) = ?Hx(

Theorem
Let g > 0.
o V and \/Ii are bounded:
o R(V) = H° and R(\IJ)
o N(V )Z{geHOIff"gC[ q,q]}
o N(V) = {ge H | F(sgntg) C [- q,q]}
Sep. 5-14, 2016 49/ 80
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Properties of the operators W and 0
o Vo2 + g2

(?g3£2—+q2+ ’ >> (). &eDW) =,
(9e) 00 = 2575 (7 (senee)) (VoI + ) ) (x), & € D) = .

Forg=0 W=Id V= %(sgn(-)), and their properties are evident.

(Ve) (x) = ?Hx(

Theorem
Let g > 0.
o V and \/13 are bounded:
R(W) = H® and R(\IJ)
N(V )Z{gGHOIfT"gC[ q,q]}
(W) = {gc H | T(sente) C [~a,ql}:

o U and W are not invertible.

49/ 80




Properties of \TI(N(W)) and \U(N(\]}))

considered in H™1).

Theorem (L.V.Fardigola, ESAIM: COCV 18 (2012), 748-773)

Let >0, n=0,00. Then sgnx |x|"e=9 € W(N(W)) (the closure is

o = = E A
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Properties of \TI(N(W)) and \IJ(N({I}))

Theorem (L.V.Fardigola, ESAIM: COCV 18 (2012), 748-773)

Let >0, n=0,00. Then sgnx |x|"e=aXl ¢ \/I;(N(lll)) (the closure is
considered in H™1).

Theorem (L.V.Fardigola, ESAIM: COCV 18 (2012), 748-773)

Let >0, n=0,00. Then sgnx |x|"e=9Xl € W(N(W)) (the closure is
considered in H°).
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Properties of \TI(N(W)) and \IJ(N({I}))

Since the system of elements {sgn x |x|"e~9xI1 is closed in HO and
H~, we have two theorems:

Theorem (L.V.Fardigola, ESAIM: COCV 18 (2012), 748-773)

Let g > 0. Then H™ is the closure oflTJ(N(\II)) with respect to to the
norm ||| 2.
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Properties of \TJ(N(W)) and \U(N(\Tf))

Since the system of elements {sgn x |x|"e~ 91X/} is closed in H° and
H~, we have two theorems:

Theorem (L.V.Fardigola, ESAIM: COCV 18 (2012), 748-773)

Let g > 0. Then H™ is the closure oflTJ(N(\U)) with respect to to the
norm ||| 2.

Theorem (L.V.Fardigola, ESAIM: COCV 18 (2012), 748-773)

Let g > 0. Then HO is the closure of W(N(W)) with respect to to the norm

0
-

o
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0
0_ (Wo
Let g >0, w” = (wo)'

Approximate null-controllability problems at a free time
1

o = = E A
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Approximate null-controllability problems at a free time

0
Let g >0, w0 = (""8).
Wi

wy = Vgy — w8

0=Vgl -0
_ — {OZ\IJg{’—>O

H® = w(N(W)) &3{gf}>2, C N(W) { as n — oo,

0 as n — oQ.

HT = V(NW)) o3 gl c N(W) S - =
wy = Vgl — wyp
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Approximate null-controllability problems at a free time

0
Let g >0, w0 = (w8>.
Wi

~y = ~ [wl = Vgh — w
H® =W(N(V)) «3{gy}rz1 C N(V) N as n — 0o,
0=Vgy — 0
R 0=Vg =0
H™ =V (N(V)) «3{g'}721 C N(V) Iy o asn— oo
wi = Vgl — wy

For g" = gl + g, n € N, we have g" € H°, n € N, and

Vg" = Wgf — wp
~ 0 as n — oQ.
Vg" = Vgl — wj
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Approximate null-controllability problems at a free time

We can find a sequence {U/"}7° C HO® 1 L°°(R) such that
suppU" C [=Tp, Tp], n €N, and

lg" —uU"|° =0 asn— oc.
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Approximate null-controllability problems at a free time

We can find a sequence {U/"}7° C HO® 1 L°°(R) such that
suppU" C [=Tp, Tp], n €N, and

lg" —uU"|° =0 asn— oc.

Let w” be the solution to control system (14), (15) with T = T, and
u(t)=U"(t), t € [0, Tp], neN.

L.V. Fardigola Transformation operators in control problems Sep. 5-14, 2016 53/ 80



Approximate null-controllability problems at a free time

We can find a sequence {U/"}2°, C HO® 1 L°°(R) such that
suppU™ C [=Tp, Tp], n € N, and

lg" —uU"|° =0 asn— oc.
Let w” be the solution to control system (14), (15) with T = T, and

u(t)=U"(t), t € [0, Tp], n € N.
Since the operators W and W are bounded, we have

0 1 wy"
TII" < 2w _ (2
ol < % - (te)

1 0 Wgh
< - — | ~
< (- G2)

0

R [y

0
>—>0 as n — oo.

L.V. Fardigola Transformation operators in control problems
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Approximate null-controllability problems at a free time

We can find a sequence {U/"}2°, C HO® 1 L°°(R) such that
suppU™ C [=Tp, Tp], n € N, and

lg" —uU"|° =0 asn— oc.

Let w” be the solution to control system (14), (15) with T = T, and
u(t)=U"(t), t € [0, Tp], n € N.
Since the operators W and W are bounded, we have

el < e~ ()
M ] R [y

Wi, To) = Ex To)x [w0() = (Gygn ) €0 and IEC To)eIP < d

0

0
>—>0 as n — oo.

wy"

L.V. Fardigola Transformation operators in control problems

Sep. 5-14, 2016 53/ 80



Necessary and sufficient conditions for approximate
null-controllability at a free time

Thus we obtain the following theorem
Theorem (L.V.Fardigola, ESAIM: COCV 18 (2012), 748-773)

Let g > 0. Each state w° € H is approximately null-controllable at a free
time.
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Necessary and sufficient conditions for approximate
null-controllability at a free time

Thus we obtain the following theorem
Theorem (L.V.Fardigola, ESAIM: COCV 18 (2012), 748-773)

Let g > 0. Each state w° € H is approximately null-controllable at a free
time.

By analysing the d'Alembert formula for the solution of the wave equation,
we obtain the following theorem

Theorem ( L.V.Fardigola and G.M.Sklyar, JMAA 276(2002), No. 2,
109-134)

Let g = 0. A state w° € H is approximately null-controllable at a free time
iff
wl — (sgnxwl)' =o0. (20)

v
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Example

Let g > 0, wd(x) = e~ sgnx, wi(x) =0, x € R.

o = = E A
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Example

Let ¢ > 0, wi(x) = e"9*lsgnx, wl(x) =0, x € R.
Consider the following control problem

Wi = Wi — g°w — 2u(t)0(x), x€eR, te(0,T),

w(-,0) = w), we(-,0) = wl.
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Example

Let ¢ > 0, wi(x) = e"9*lsgnx, wl(x) =0, x € R.
Consider the following control problem

Wi = Wi — g°w — 2u(t)0(x), x€eR, te(0,T),

w(-,0) = w), we(-,0) = wl.

For n > ‘/75, set T, = n®, u,(t) = nw, t €0, Ty
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L.V. Fardigola Transformation operators in control problems

Example
Let ¢ > 0, wi(x) = e"9*lsgnx, wl(x) =0, x € R.
Consider the following control problem
Wi = Wi — g°w — 2u(t)0(x), xeR, te(0,T),
w(-,0) = w), we(-,0) = wl.

For n > ‘/75, set T, = n®, u,(t) = ”M' t €0, Ty
Let w" be the solution to the control problem with T = T, and u = u,,.
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Example
Let ¢ > 0, wi(x) = e"9*lsgnx, wl(x) =0, x € R.
Consider the following control problem
Wi = Wi — g°w — 2u(t)0(x), xeR, te(0,T),

w(-,0) :w8, w;(-,0) :wcl).

For n > ‘/75, set T, = n®, u,(t) = nw, t €0, Ty
Let w" be the solution to the control problem with T = T, and u = u,,.

Then 0
w’(-, Tp) 14 2g°/?
ﬁ — 0 as n — oQ.
Wt('a Tn) q5/ n
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Example

Let ¢ > 0, wi(x) = e"9*lsgnx, wl(x) =0, x € R.
Consider the following control problem

Wi = Wi — g°w — 2u(t)0(x), xeR, te(0,T),
w(-,0) = w), we(-,0) = wl.
For n > ?, set T, = n®, u,(t) = ”M' t €0, Ty
Let w" be the solution to the control problem with T = T, and u = u,,.

Then /
n( s Tn) 1+ 2q5 2
'H(Wt(aTn)> _W_)O as n — oo.
w?
Thus the state w <w8> is approximately null-controllable at a free
1
time.
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Example

Let ¢ > 0, wi(x) = e"9*lsgnx, wl(x) =0, x € R.
Consider the following control problem

Wi = Wi — g°w — 2u(t)0(x), xeR, te(0,T),
w(-,0) = w), we(-,0) = wl.
For n > ?, set T, = n®, u,(t) = ”M' t €0, Ty
Let w" be the solution to the control problem with T = T, and u = u,,.

Then
w’(-, Tp)
IC)
0
Thus the state w® = <x8> is approximately null-controllable at a free

0 1+2q5/2

— 0 asn— .
q5/2n2

] 1
time.

Moreover, the pairs (Tp, us), n > ?, solve the approximate
null-controllability problem at a free time.
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Null-controllability problems for the wave equation with
variable coefficients

Now we consider the following controllability problem

1

= (k(§)ze) ¢ +7(§)z, £>0, t€(0,T), (21)
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Null-controllability problems for the wave equation with
variable coefficients

Now we consider the following controllability problem

Zee = @ (k(€)ze)¢ +1(€)z, €50, te(0,T), (21)

z(0,t) = v(t), te(0,T), (22)
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Null-controllability problems for the wave equation with
variable coefficients

Now we consider the following controllability problem

1

= (k(§)ze) ¢ +7(§)z, £>0, t€(0,T), (21)

z(0,t) = v(t), te(0,T), (22)

2(¢,0) = 28(5)} . { 2(¢,T) =z (¢)
z:(£,0) = 2 (¢) 7(6, T) =2 (€)
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Null-controllability problems for the wave equation with

variable coefficients

Now we consider the following controllability problem

Lo 1
()

z(0,t) = v(t), te(0,T),

z:(£,0) = 2 (¢)

(k(&)ze) e +v(&)z, €>0, t€ (0, T),

7(6, T) =2 (€)

2(¢,0) =28(§)} . { 2(¢,T) =z (¢)

(23)

where T > 0 is a constant; p, k, 7, w§, and w are given functions; v €
L>(0, T) is a control; p, k,v € C*[0,4+00), p, k are positive on [0, +00).

L.V. Fardigola Transformation operators in control problems
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Assume 1 = (kp)'/4, n € C2(R), 0 = (k/p)*/*,

o = = E A
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Assume 1 = (kp)'/4, n € C3(R), 8 = (k/p)'/4,

a(g):/fi

) € R, and
2

o(§) = +o0 as £ = +oo,

o = = E A
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Assume 1 = (kp)'/4, n € C3(R), 8 = (k/p)'/4,

a(g):/fi

) € R, and
2

o(§) = +o0 as £ = +oo,

o = = E A
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Assume 1 = (kp)'/4, n € C3(R), 8 = (k/p)'/4,

3
a(f):/o A £ eR, and o(§) = +o0 as £ = +oo,

02(n)’
d /
D,y = 62 (&—F%).

/
L (ke = p2yf - (Dng (92”—)> f.

P n

Then
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Assume 1 = (kp)'/4, n € C3(R), 8 = (k/p)'/4,

du

3
a(f):/o ——, §ER, and o(§) = +o0 as £ = +oo,

0%(n)’
d 17
2
Dng =40 (_dX +_’f}> .
Then

P n

Let 4 be the even extension of v, p = Dyg (02%/).

L.V. Fardigola Transformation operators in control problems

/
L (ke = p2yf - (Dng (92”—)) f.
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Assume 1 = (kp)1/4, ne Cz(R), 0= (k/p)1/4,
(&) = /5 EelR and (&) = 400 as £ — +oo
o _‘7 , s
o 02(w)
d 77/
-2 -+ L
Dy =0 ( » + 7)) .

/
L (ke = p2yf - (Dng (92”—» f.

P n

Then

Let 4 be the even extension of v, p = Dyg (02%/).
We assume also that

Jg = const > 0 (r =poo 1 —¢q?e Co,+00) N L%(0,+00)

and / )\|r()\)|d)\<oo).
0
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Spaces H™ and H™

Classical Sobolev spaces

HP = {p € L*(R) |

_ gk
) i dk 2 1/2

el = P ,

k=0 dxk L2(R)
H™P = (HP)",

f, ol

f p—sup{|< gop#O}
1] ol | el

d d

L.V. Fardigola Transformation operators in control problems

Modified Sobolev spaces

HP = {1/) € LlOC(R) |

Vk =0,p Dyt € Lig(R)},
1/2
& (R)) ’

lgll* = sup { |<<|]w[|f’»| | v # 0}

04t = (3 (ot

k=0

HP = (),

<<D779g? w» = <<g7 Dn0¢>> y P ?é 2.
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Reduced control problem

norm [-[.

Put]ﬁlm:{goeHm.(pisodd}, 2<m<2 T =H° x H! with the

o = = E A
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Reduced control problem

Put]ﬁl’":{cpeHm:cpisodd}, 2<m<2 T =H° x H! with the

norm [-[.
. 2\ [z
Let z(-,t), 20 z" be the odd extension w.r.t. £ for z(-, t), (z%), (zOT)’
1 1
resp., (t € [0, T]).
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Reduced control problem

Put]ﬁlmz{cpEHm:cpisodd}, 2<m<2 T =H° x H! with the

norm |[-].
zJ zd
Let z(-,t), 20 z" be the odd extension w.r.t. £ for z(-, t), <z%>, <20T>'
1 1
resp., (t € [0, T]).
Controllability problem (21)—(23) can be reduced to the following one
Zy = DE,GZ + pz — 27]2(0)an95, EeR, te(0,T), (24)
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Reduced control problem

Put]ﬁlmz{cpEHm:cpisodd}, 2<m<2 T =H° x H! with the

norm |[-].
. 2\ [z
Let z(-,t), 20 z" be the odd extension w.r.t. £ for z(-, t), <z%>, <20T>'
1 1
resp., (t € [0, T]).

Controllability problem (21)—(23) can be reduced to the following one

Zy = Dflez + pz — 27]2(0)an95, EeR, te(0,T), (24)

(:t((-’,%))> B (:%) =2" - (:f(.’}%) = <§§) =z",  (25)
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Reduced control problem

Put H" = {o e H™ : pis odd}, —2 < m < 2, Hl = H® x H! with the

norm |[-].
z0 zl
Let z(-,t), 2% z" be the odd extension w.r.t. ¢ for z(-, t), <z%>’ <20T>'
1 1
resp., (t € [0, T]).

Controllability problem (21)—(23) can be reduced to the following one

21 = Doyz + pz — 207 (0)vDyes, EE€R, t€ (0, T), (24)

z(-,0)\ _ (20\ _ o 2(wT)\ _ (zg\ _ 7
(zt(-,0)>_<z? —2 o (D)= (%)= @
where %z [0, T] — H-P, p=0,1,2, 2% z" € HI, 6 is the Dirac

distribution, 6 = H’, H is the Heaviside function: H(¢) =1 if £ > 0, and
H(&) = 0 otherwise.
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Reduced control problem

Put H" = {o e H™ : pis odd}, —2 < m < 2, Hl = H® x H! with the
norm |[-].

z0 zl
Let z(-,t), 2% z" be the odd extension w.r.t. ¢ for z(-, t), <z(i))>’ <z(1)T>'
resp., (t € [0, T]).
Controllability problem (21)—(23) can be reduced to the following one

21 = Doyz + pz — 207 (0)vDyes, EE€R, t€ (0, T), (24)

(9) =@ === (R)-E=7 e

where %z [0, T] — H-P, p=0,1,2, 2% z" € HI, 6 is the Dirac
distribution, 6 = H’, H is the Heaviside function: H(¢) =1 if £ > 0, and
H(&) = 0 otherwise.

We call this problem the main control problem.
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coefficients

Control system for the wave equation with constant

norm ||-]].

Putﬁm:{goeH"’:cpisodd}, —2§m§2,H:ﬁ°xﬁ_1Withthe

o = = E A
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Control system for the wave equation with constant
coefficients

Put ﬁ’":{goeH’":goisodd}, —2<m<2, H = H° x H~! with the
norm |[-].
Consider the auxiliary control problem

Wi = Wy — q2W — 2U(5l, X € R, te (07 T)7 (26)
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Control system for the wave equation with constant
coefficients

Put ﬁ"’:{goeH’":goisodd}, —2<m<2, H = H° x H~! with the
norm |[-].
Consider the auxiliary control problem

Wi = Wy — q2W — 2U(5l, X € Ry te (07 T)7 (26)

(vvvvt(('-’,%))> B (3[)) W (vvvvf('.’, 7}))) = (ﬁ) =w'. (@)
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Control system for the wave equation with constant
coefficients

Put ﬁ’":{goeH’":goisodd}, —2<m<2, H = H° x H~! with the
norm |[-].
Consider the auxiliary control problem

Wi = Wy — q2W — 2U(5l, X € Ry te (07 T)7 (26)

(o) = (o) =w = () = () =we e

where Lw : [0, T] — H=P, p=0,1,2, wO,w” € H, § is the Dirac
distribution with respect to x.
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Scheme of study

Zy = Dflaz + pz — 21?(0)vDy6 in H-2 J

3J
T=sT, |

Yee = Yoa — ry — 2ud’ in H~2

J
J

Wi = Wy — g°W — 2ud’ in H-2

p&) =r(o(€)) +q* (R

)

o = = E A
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Transformations between solutions to the main and the
auxiliary control problems

Theorem
Let w be a solution to the auxiliary control problem (i. e., problem (26),

(27)) for some u € L>=(0, T) and w® € H. Let z(-,t) = Tw(, t),
telo, T].
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Transformations between solutions to the main and the
auxiliary control problems

Theorem

Let w be a solution to the auxiliary control problem (i. e., problem (26),
(27)) for some u € L°°(0, T) and w® € H. Let z(-, t) = Tw(-, t),

t € [0, T]. Then, z is a solution to the main control problem (i. e., problem
(24), (25)) with 2° = Tw® and
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Transformations between solutions to the main and the
auxiliary control problems

Theorem

Let w be a solution to the auxiliary control problem (i. e., problem (26),
(27)) for some u € L°°(0, T) and w® € H. Let z(-, t) = Tw(-, t),

t € [0, T]. Then, z is a solution to the main control problem (i. e., problem
(24), (25)) with 2° = Tw® and

n(0)v(t) = u(t) + /000 K(0,&)w(¢, t) d€, telo, T] (28)

L.V. Fardigola Transformation operators in control problems Sep. 5-14, 2016 62/ 80



Transformations between solutions to the main and the
auxiliary control problems

Theorem

Let w be a solution to the auxiliary control problem (i. e., problem (26),
(27)) for some u € L°°(0, T) and w® € H. Let z(-, t) = Tw(-, t),

t € [0, T]. Then, z is a solution to the main control problem (i. e., problem
(24), (25)) with 2° = Tw® and

n(0)v(t) = u(t) + /000 K(0,&)w(¢, t) d€, telo, T] (28)

Moreover,
z(-, t) w(-,t)
DEEDD <l @I
I¥ll=ory < Qo(T) (lellimeo.ry + IWON°) - (30)
where Co > 0 and Qu(T) > 0.

L.V. Fardigola

, telo,T], (29)
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Sketch of proof

Since z(-, t) = Tw(, t), t € [0, T], and

o = = E A
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Sketch of proof

Since z(-, t) = Tw(, t), t € [0, T], and

T is an isomorphism of H™ and H™, —2 < m < 2, J

o = = E A
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Sketch of proof

Since z(-, t) = Tw(, t), t € [0, T], and

T is an isomorphism of H™ and H™, -2 < m< 2, J

JCEDD =l ()

i.e., (29) holds.

we have

0
, te[0,T],
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Sketch of proof

Now, let us prove (28) and (30).

o = = E A
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Sketch of proof

Now, let us prove (28) and (30). We have

2(6,1) = (Tw(- 1)) (¢)

o = = E A
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Sketch of proof
Now, let us prove (28) and (30). We have

2(6,1) = (Tw(- 1)) (¢)

, xeR, te][0,T].
A=0c(¢)

a(€) = [ 355 §ER. |

1 o0
= o <w()\, t)+ /|>\| K(|A], x)w(x, t) dx)
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Sketch of proof
Now, let us prove (28) and (30). We have

2(6,1) = (Tw(- 1)) (¢)

1 < o0
= —(wnt)+ [ KA x)w(x, t) dx) xR, te[0,T].
n(¢) /|,\| A—o(€)
o(€) = (f?%,geR.J
Therefore

v(t) =z(+0,t) = ﬁ (u(t) + /000 K (0, x)w(x, t) dx) , te0, T].

u(t) = w(+40,t), t € [0, T],J

i.e., (28) is true.
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Sketch of proof

Therefore,

V()] < —

20y 1+ KO w( 0)]°) . ¢ < [0, 7]

o = = E A
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Sketch of proof

Therefore,
1
MO < gy (16O 1K) I 0]°) £ € [0, 7]

We have
<||K(o,.)H°)2 < My /OOO (ao ()_2(>>2 dx < 2Mooo(0) /Ooo xr(x)dx = C

|K(y)| < Mooo (B52), yo > y1 >0, 0o(x) = [7 [r(€)| d€, x > 0. )
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Sketch of proof

Therefore,

1
MO < s (14 1KQI° Iw( 0I°) £ < [0,T]

We have
<||K(07')HO>2 < Mo /000 (00 (g))Z dx < 2Mooo(0) /000 xr(x)dx = C

|K(y)| < Mooo (B52), yo > y1 >0, 0o(x) = [7 [r(€)| d€, x > 0. J

Hence,

1
VIl 2¢0,7) < 70 <||U||L2(o )+ CQ(t (MWOM + llull o o, T)))

w1 < QT (w?ll° + 1l o). £ € 10,71 |

i.e., (30) holds. O
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Transformations between solutions to the main and the
auxiliary control problems

Theorem

Let z be a solution to the main control problem (i. e., problem (24), (25))
for some v € L>°(0, T) and 2° € HI. Let w(-,t) = T 1z(-,t), t € [0, T].
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Transformations between solutions to the main and the
auxiliary control problems
Theorem

Let z be a solution to the main control problem (i. e., problem (24), (25))
for some v € L>°(0, T) and 2° € HI. Let w(-,t) = T 1z(-,t), t € [0, T].

Then, w is a solution to the auxiliary control problem (i. e., problem (26),
(27)) with w® = T=12° and
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Transformations between solutions to the main and the
auxiliary control problems
Theorem

Let z be a solution to the main control problem (i. e., problem (24), (25))
for some v € L>°(0, T) and 2° € HI. Let w(-,t) = T 1z(-,t), t € [0, T].

Then, w is a solution to the auxiliary control problem (i. e., problem (26),
(27)) with w® = T=12° and

u(t) =n(0)v(t) + /000 L(0,x)S z(x, t) dx, tel0,T] (31)
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Transformations between solutions to the main and the
auxiliary control problems

Theorem

Let z be a solution to the main control problem (i. e., problem (24), (25))
for some v € L>°(0, T) and 2° € HI. Let w(-,t) = T 1z(-,t), t € [0, T].

Then, w is a solution to the auxiliary control problem (i. e., problem (26),
(27)) with w® = T=12° and

u(t) = n(0)v(t) + /000 L(0,x)S™ z(x, t) dx, te[o, Tl

Moreover,
[GED<alCEDD ccon @

0
lell o,y < QT (Mo, ry + [2°0°) (33)
where C; > 0 and Q1(T) > 0.

L.V. Fardigola

(31)
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Sketch of proof

The proof of conditions (31) and (32) is similar to the proof of the
appropriate conditions of the previous theorem.
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Sketch of proof

The proof of conditions (31) and (32) is similar to the proof of the
appropriate conditions of the previous theorem.
Let us prove (33).
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Sketch of proof

The proof of conditions (31) and (32) is similar to the proof of the
appropriate conditions of the previous theorem.
Let us prove (33)

Since w(-, t) = T z(-,t) = T 18 1z(-, t), t € [0, T], we have

u(t) =n(0)v(t) — /000 K(0, x)w(A, t) dx

w depends on w° and u.
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Sketch of proof

The proof of conditions (31) and (32) is similar to the proof of the
appropriate conditions of the previous theorem.
Let us prove (33)

Since w(-, t) = T z(-,t) = T 18 1z(-, t), t € [0, T], we have

u(t) =n(0)v(t) — /000 K(0, x)w(A, t) dx

w depends on w° and u.
Therefore,

u(t) = g(t) + /0 P(t - pu(u)dp,  te[0,T],
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Sketch of proof

The proof of conditions (31) and (32) is similar to the proof of the
appropriate conditions of the previous theorem.
Let us prove (33)

Since w(-, t) = T z(-,t) = T 18 1z(-, t), t € [0, T], we have

u(t) =n(0)v(t) — /000 K(0, x)w(A, t) dx

w depends on w° and u.
Therefore,

u(t) = g(t) + /0 P(t - pu(u)dp,  te[0,T],

where g depends on v, w®, K, and P depends on K,

gel=(0,T) and Pel®0,T).
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Sketch of proof

Thus, u is determined by the integral equation

o) =s(0)+ [ “P(t — wuu) dp,

te[o, Tl

o = = E A
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Sketch of proof
Thus, u is determined by the integral equation

o) =s(0)+ [ Pt—pmu(u)d, te[0,T]
It follows from

(34)

Let y € L1(0,T), y(t) >0, t € (0, T),
and y(t) < G+ G foty()\) dX, t € (0, T), for some constants
C1,Co > 0. Then y(t) < Ciet@, t € (0, T).

o = = E A
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Sketch of proof

Thus, u is determined by the integral equation

o) =s(0)+ [ Pt pu(w)dp, tel. T (34)

It follows from
Theorem (Gronwall).| Let y € L*(0, T), y(t) >0, t € (0,T),

and y(t) < G+ G foty()\) dX, t € (0, T), for some constants
Ci, G > 0. Then y(t) < Ciet©@ te (0, 7).

that the equation

u(t) = /O P(t— wu(u)du,  te[0,T],

has only trivial solution in L2(0, T).
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Sketch of proof

Thus, u is determined by the integral equation

o) =s(0)+ [ Pt pu(w)dp, tel. T (34)

It follows from
Theorem (Gronwall).| Let y € L*(0, T), y(t) >0, t € (0,T),
and y(t) < G+ G foty()\) dX, t € (0, T), for some constants
Ci, G > 0. Then y(t) < Ciet©@ te (0, 7).

that the equation

u(t) = /O P(t— wu(u)du,  te[0,T],

has only trivial solution in L2(0, T).

By using the Fredholm alternative, we see that equation (34) has the
unique solution in L2(0, T).
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Sketch of proof

It follows from (34) that

t
lu(t)] < ||g||Loo(o,T) + ||'D||L<>o(o,T)/0 lu(p)| dps,

te[o,T].

o = = E A
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Sketch of proof

It follows from (34) that

t
lu(t)] < ||g||Loo(o,T) + ||'D||L<>o(o,T)/0 lu(p)| dps, te[0,T].
Applying again
(Theorem (Gronwall):) Let y € L1(0, T), y(t) 2 0, t € (0, T),

and y(t) < G+ G foty()\) dX, t € (0, T), for some constants
C1, Co > 0. Then y(t) < Ciet@, t € (0, T).

o = = E A
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Sketch of proof
It follows from (34) that

t
(O] < glimo.1) + 1Pl e,y /0 () i, teo, T].

Applying again
Theorem (Gronwall). " Let y € L}(0, T), y(t) >0, t € (0, T),
and y(t) < G+ G fot y(A)dA, t € (0, T), for some constants
C1,Co > 0. Then y(t) < Ciet@, t € (0, T).

we obtain

u(t)] < gl oo,y 1P, tefo, T),

l1l1-<(o,0) depends on [[w®[|° and [[v]jpoe (o, |
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Sketch of proof
It follows from (34) that

t
(O] < glimo.1) + 1Pl e,y /0 () i, teo, T].

Applying again
Theorem (Gronwall). " Let y € L}(0, T), y(t) >0, t € (0, T),
and y(t) < G+ G fot y(A)dA, t € (0, T), for some constants
C1,Co > 0. Then y(t) < Ciet@, t € (0, T).

we obtain

u(t)] < gl oo,y 1P, tefo, T),

gl oo,y depends on [[w?]|” and [[v]] o, J

Therefore,

0
lullimo,ry < @(T) IVl io,my + 12°1°)
for some @Q:(T) > 0. O
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Uniqueness and well-posedness of the main control problem

Remark It is well known that the solution to the auxiliary control problem

(i. e., problem (26), (27)) is unique. Therefore, the last two theorems yield
uniqueness of solution to the main control problem (i. e., problem (24),

(25)).
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Uniqueness and well-posedness of the main control problem

Remark It is well known that the solution to the auxiliary control problem
(i. e., problem (26), (27)) is unique. Therefore, the last two theorems yield
uniqueness of solution to the main control problem (i. e., problem (24),

(25)).

Remark It follows from the last two theorems that

m (zzt((-':tt))) mo = Q(T) (H}ZOH]O + HVHLoo(o,T)) ,  telo,T],

where Q2(T) > 0. Therefore, the main control problem (i. e., problem
(24), (25)) is well posed.
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Necessary and sufficient conditions of approximate
null-controllability for the main control problem at a free

time
Thus we obtain the following theorem

Theorem

Let g > 0. Each state z° € THI of the main control problem (i. e., problem
(24), (25)) is approximately null-controllable at a free time.
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Necessary and sufficient conditions of approximate
null-controllability for the main control problem at a free
time

Thus we obtain the following theorem

Theorem

Let g > 0. Each state z° € THI of the main control problem (i. e., problem
(24), (25)) is approximately null-controllable at a free time.

Theorem

Let g = 0. A state z° € THI of the main control problem (i. e., problem
(24), (25)) is approximately null-controllable at a free time iff

2-T (sgn(-) 'ﬁ‘*lzg), =0. (35)

v
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Example

Consider the following control problem

2= (14 (14O 2) — g g% €0 t€@.T)

z(0,t) = v(t), te(0,T),

A60) = =20 (=), €50

;

zt(g,O):z?(g):—lz( 12+ ), §>0,

;

where v € L*°(0, T) is a control.
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Example

Let us construct the spaces H™, m = 2, —2, where this problem is
considered and obtain the reduced control problem.
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Example

Let us construct the spaces H™, m = 2, —2, where this problem is
considered and obtain the reduced control problem.
We have p(x) = ﬁ k(x) =1+ [£].
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Example

Let us construct the spaces H™, m = 2, —2, where this problem is
considered and obtain the reduced control problem.

We have p(x) = ﬁ k(x) =1+ [¢|. Then,

(&) = (k(&)p(&))* = 1,
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Example

Let us construct the spaces H™, m = 2, —2, where this problem is
considered and obtain the reduced control problem.
We have p(x) = ﬁ” k(x) =1+ [£|. Then,

(&) = (k(&)p(&))* = 1,

0(&) = (k(&)/p()* = V1+¢],
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Example

Let us construct the spaces H™, m = 2, —2, where this problem is
considered and obtain the reduced control problem.

We have p(x) = ﬁ” k(x) =1+ [¢|. Then,

(&) = (k(&)p(&))* = 1,
0(&) = (k(&)/p()* = V1+¢],

(&) = sgn& In(1 + [¢]),
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Example

Let us construct the spaces H™, m = 2, —2, where this problem is
considered and obtain the reduced control problem.

We have p(x) = ﬁ” k(x) =1+ [¢|. Then,

(&) = (k(&)p(&))* = 1,
0(&) = (k(&)/p()* = V1+¢],

(&) = sgn& In(1 + [¢]),

d ! d
Do =2(©) (e + 1) =+ e .

L.V. Fardigola Transformation operators in control problems Sep. 5-14, 2016 73/ 80



Example

Let us construct the spaces H™, m = 2, —2, where this problem is
considered and obtain the reduced control problem.

We have p(x) = ﬁ” k(x) =1+ [¢|. Then,

(&) = (k(&)p(&))* = 1,
0(&) = (k(&)/p()* = V1+¢],
o(€) =sgn€ In(1 +[¢)),

d ! d
Do =2(©) (e + 1) =+ e .

(SY)(E) = U(a(€)), ¥ € H™, ((Sg.¢) = (.57 ), g € H™™, p € H™.
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Example

We have

Do =(1+[€])¢,

d
Doy =(1 + |§|)d—5 ((1+1€Dw) = (1+ [€])¢" sgn & + (1 + [€]) %"

o = = E A
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Example

We have

Dyop =(1+ Ifl)so’,

Dioe =(1+ €)1z ((1+|€|)so)-(1+|<§|)sosgn£+(1+lfl)2 4
Hence

p € H™ & Dlyp € L2y(R) & (1+ [€))™(™ € [24(R), m=0,1,2,
H~™ _(]HI”’)*, m=20,1,2,
(f, o) = (ST, S 1p).

where L%Q(R) is the space of functions square-integrable on R with the
weight 72/62.
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Example

Let z(-

(te[0,T)].

t), 23, 29 be the odd extension w.r.t. & for z(-, t), 2, z

0, resp.,

o = = E A
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Example

Let (-, t), 23, 20 be the odd extension w.r.t. £ for z(-, t), 2, 29, resp.,
(t € [0, T]).

The control problem can be reduced to the following one

zee = Djgz + p(§)z — 2°(0)v(t)Dyed(€), S ER, t€(0,T),
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Example

Let (-, t), 23, 20 be the odd extension w.r.t. £ for z(-, t), 2, 29, resp.,
(t [0, T]).
The control problem can be reduced to the following one

zee = Djgz + p(§)z — 2°(0)v(t)Dyed(€), S ER, t€(0,T),

Z(" 0) = 28’ Zt('70) = z(l)’
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Example

Let (-, t), 23, 20 be the odd extension w.r.t. £ for z(-, t), 2, 29, resp.,
(t €[0, T]).

The control problem can be reduced to the following one

zee = Djgz + p(§)z — 2°(0)v(t)Dyed(€), S ER, t€(0,T),

Z(" 0) = 28’ Zt('70) = z(l)a
where %z [0, T] — HP, p=0,1,2, 25 e HO, 20 ¢ H,

4 + 3[¢|

PO = 31T ey
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Example

Let (-, t), 23, 20 be the odd extension w.r.t. £ for z(-, t), 2, 29, resp.,
(t €[0, T]).
The control problem can be reduced to the following one

zee = Djgz + p(§)z — 2°(0)v(t)Dyed(€), S ER, t€(0,T),

Z(" 0) = 28’ Zt('70) = z(l)a
where %z [0, T] — HP, p=0,1,2, 25 e HO, 20 ¢ H,

4+ 3¢
41+ El)

We call this problem the main control problem.

p(§) =
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Example

We have

(oo ) (N)=> +e P,

A €R,
T
PO = 2@ v ey ©

YA) = (e7M —1)sgn. J

o = = E A
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Example

We have

(poo ) (V) =

+e |>‘| A €eR,
_ A+3El

PO =21y

Hence g = ¥3 > 0, rN) =e P AeR

YA) = (e7M —1)sgn. J

/OOO)\r()\)d)\<oo J

o = = E A
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Example

Denote w(

7t):

T-!

z(-,t), t €0, T], wd =T 12,

0_']1*71 0

o = = E A
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Example

Denote w(-, t) = T~ 'z(-, t), t € [0, T], wd = T~ 12§, wd = T~120.
Then we obtain the auxiliary control problem

3
wtt:wxx—zw—2u5/, xeR, te(0,T),
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Example

Denote w(-, t) = T~ 'z(-, t), t € [0, T], wd = T~ 12§, wd = T~120.
Then we obtain the auxiliary control problem

3
wtt:wxx—zw—2u5/, xeR, te(0,T),

W('70) :W87 Wt(‘vo) :W%
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Example

Denote w(-, t) = T~ 'z(-, t), t € [0, T], wd = T~ 12§, wd = T~120.
Then we obtain the auxiliary control problem

3
Wi = Wy — Zw—2u5', xeR, te(0,T),

( O) w07 Wt(‘ 0) = W??
wheredtp [0, T] = HP, p=0,1,2, WOEHO w:lEH1

u(t) = v(t) + /0 b L(0,\)z(e ™ —1,t) dA.

)= 2 (z%-@ - )) PE =0 }
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Example
Calculating w3 and w?, we obtain

wi(x) = e Msgnx and wi(x)=—Ze X sgnx,

o = = E A
L.V. Fardigola Transformation operators in control problems
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Example
Calculating w3 and w?, we obtain
wi(x) = e Msgnx and wi(x)=—Ze X sgnx,
For u,(t) = e~ t/2, t € [0, T,],

x € R.

o = = E DA
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Example

Calculating w3 and w?, we obtain
0 x| 0 I
wy(x) =e ™sgnx and wij(x)= —5e Misgnx, x eR.
For u,(t) = e~t/2, t € [0, T,], we obtain that

w'(x, t) = e e Xsgnx, xeR, tel0, T,

is the solution to the auxiliary control problem with u = u, and T = T,,.
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Example

Calculating w3 and w?, we obtain

1
wi(x) = e Msgnx and wi(x)= —§e_|x| sgn X,

For u,(t) = e~t/2, t € [0, T,], we obtain that

w'(x, t) = e e Xsgnx, xeR, tel0, T,

x € R.

is the solution to the auxiliary control problem with u = u, and T = T,,.

0
wy )\ . :
Thus the state w® = ( 8) is approximately null-controllable at a free

1
time.
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Example

Calculating w3 and w?, we obtain
0 x| 0 I
wy(x) =e ™sgnx and wj(x)= —5e Mlsgnx, x € R.

For un(t) = e~t/2, t € [0, T,], we obtain that

t/2 o= Ix|

wl(x,t)=e e Xsgnx, xeR, te]0,T,,

is the solution to the auxiliary control problem with u = u, and T = T,,.
0

wy\ . :
Thus the state w® = <w8> is approximately null-controllable at a free
1

time.

Moreover, the pairs (Tp, u,) (T, — 00 as n — 00), solve the approximate
null-controllability problem at a free time.
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Example

Since 2"(-, t) = Tw"(-, t), t € [0, T,], we have

2"(¢, 1) = 2¢ % <%|€|> sgné, E€R, te|0,T,],

o = = E A
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Example

Since 2"(-, t) = Tw"(-, t), t € [0, T,], we have

2
2"(&,t) =2e 2 | ——— | sgn€&, £€R, tel0, T,
1+ €]
and z" is the solution to the main control problem with T = T,, and

v(t) = vo(t) = u,,(t)—i—/ooo K(0,x)W"(x, t) dx = 2h(2)e" 2, t [0, T,

KO) = 2 We—? . )) Yoy 20 J
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Example

Since 2"(-, t) = Tw"(-, t), t € [0, T,], we have

2
2"(&,t) =2e 2 | ——— | sgn€&, £€R, tel0, T,
1+ €]
and z" is the solution to the main control problem with T = T,, and

v(t) = vo(t) = u,,(t)-l—/oOO K(0,x)W"(x, t) dx = 2h(2)e" 2, t [0, T,

KO) = 2 We—? . )) Yoy 20 J

0
zy) . . .
Thus the state 20 = (28) is approximately null-controllable at a free time.
1
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Example

Since 2"(-, t) = Tw"(-, t), t € [0, T,], we have

2
2'(¢,t) =2 P | ——— | sgn¢, (ER, te[0, T,
1+ [¢]
and z" is the solution to the main control problem with T = T,, and

v(t) = vp(t) = u,,(t)—l—/oOO K(0,x)W"(x, t) dx = 2h(2)e" 2, t [0, T,

KO) = 2 We—? . )) Yoy 20 J

zy) . . .
Thus the state 20 = <28> is approximately null-controllable at a free time.
1

Moreover, the pairs (Tp, v,) (T, — o0 as n — o0), solve the approximate
null-controllability problem at a free time.
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THANK YOU FOR YOUR
ATTENTION!




