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Szegd Theorem. Setting

Classical Szegd Theorem (Convolution or Tdplitz Operators)

Consider a selfadjoint operator in /2(Z) (discrete convolution)
(Au)j =} Ajkui, A=A, ) Al <o
keZ i€z

Let

e A=[-M,—M+1,.., M] C Z be an interval,

© Ap = {Ajken} be the restriction of A to A,
°

a(p) =) Aje™P >0, pe T =10,1)
jez

be the Fourier transform (symbol) of A,

o {/i}jez be the inverse Fourier transform of loga .
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Szegd Theorem. Setting

Classical Szego Theorem

Then (Szegd 1915 (leading term), 1935 (subleading term))

[e0]
logdet Ay = [Allb+ )_ jlil_j + o(1), |A] — oo,
j=1

where |A| =2M + 1 := L and a is smooth enough.
Use the identity logdet Ay = trlog Ax to write a "spectral" form

trlog Ax = |Allo + ) _ jlil_j + o(1), |A] — oo,
j=1

i.e., a two-term asymptotic trace formula for Ap via the "limiting"
operator A.

This suggests a generalization of the formula, in which log is replaced by a
function ¢ : R — C of a certain class.
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Szegd Theorem. Setting

Classical Szegd Theorem (Generalisations)

Generalizations include the multidimensional discrete and continuous cases
of A € Z9 RY, where A is, say, a cube of side length L centered in the
origin and a and ¢ are smooth enough

tr 9(An) = L7 [ gla(p))dp+ L7 To+o(L7 ), L— e

where T is an L-independent functional of ¢ and a.

Observe that the leading term of the Szégo formula is proportional to the
"volume" L7 of A while the subleading term is proportional the surface
area L971 of A, quite natural from statistical mechanics point of view.

A. Béttcher, B. Silbermann, Analysis of Toeplitz Operators, Springer, 1990
B. Simon, Szegé’'s Theorem and Its Descendants, PUP, 2011,

SPB: I.A. Ibragimov, A.Laptev, Yu.Safarov, A. Sobolev 60’ — 13’
Kharkov: N.I. Akhiezer 60’
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Szegd Theorem. Setting

Classical Szegd Theorem (Generalisations)

It is important to stress that while the leading term of Szégo formula is
fairly insensitive to the smoothness of ¢ and a, the sub-leading term is not.

An example: @ € C*® but a is the indicator of an interval A C T. In this
case (Widom 82, Sobolev 12)

trg(An) = LY((1—[8])g(0) +[Alp(1))
+ S 19 VogL+o(L9 ViogL), L — 0.

The case where ¢(0) = ¢(1) and ¢ € G, a € (0,1) is important for
quantum information theory (violation of the area law in extended
translation invariant quantum systems).
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Szegd Theorem. Setting

Ergodic Operators

A natural generalization of convolution operators in />(Z9) and L?(RR?)
are ergodic operators, a well known example is the Schrédinger operator
with ergodic potential, see e.g.

L. Pastur, A. Figotin, Spectra of Random and Almost Periodic Operators,
Springer, 1992.

Consider the technically simplest case of />(Z). Let (Q), F, P) be a
probability space, T be a measure preserving and ergodic automorphism of
Qand A: Q — B(12(Z)).

We say that a random operator A(w) := {Aj(w)};j kez is ergodic if with
probability 1 and for any t € Z

Aj+t'k+t(a)> = Ajk(Tt(U>, v_], keZ.
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Szegd Theorem. Setting

Ergodic Operators: Examples

e Convolution operators: take Q) = {0}, in particular the operator of
second difference (one dimensional discrete Laplacian)

(Hou)j = uj—1 + uj41.

@ The operator V of multiplication (Vu); = vju;, j € Z by ergodic
sequence v = {v;}jez, i.e., Q = RZ, (Tv); = vj; is the shift and
vj(w) = V(T/w) with a bounded measurable V : Q) — R.

@ One dimensional discrete Schrodinger operator
H=Hy+V

and now V is called the ergodic potential.
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Szegd Theorem. Setting

Ergodic Potentials: Examples

o () =T, F is the Borel algebra of T, P is the normalized to unity
Lebesgue measure on T and Tw = w + « (mod 1) with an irrational
a € [0,1). Given V : T — R (1-periodic), set v; = V(aj + w) and
obtain a simplest almost periodic (quasiperiodic) potential.

o OO =R%, Fis the -algebra of cylinders in RZ, P is the product
measure of a 1d probability law F and T{v;};jcz = {vjt1}jez
vi=w(T/)ie, V =y and V is the double infinite sequence of
i.i.d. random variables. This is a random potential.
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Szegd Theorem. Setting

An Analog of Szegd Theorem for Ergodic Operators

An analog could be as follows (again in the 1d case for simplicity). Let B
be a selfadjoint ergodic operator in /2(Z), a: R — C and ¢ : C — C be
sufficiently "good" functions. Then A = a(B) is a normal ergodic
operator. Denote A the restriction of A to I(A),: A = [-M, M]. We
are again interested in the asymptotic behavior of

trp(Ap), L:=2M+1 — oo,

i.e., a linear statistics of the eigenvalues of Aj as |A| — co.
The behavior is determined by the triple

(B,a,¢)

of underlying ergodic operator B and functions a : R — C, the symbol,
and ¢ : C — C, the test function.
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Szegd Theorem. Setting

An Analog of Szegd Theorem

To make the analogy more clear, consider a convolution operator A and
assume for simplicity that its symbol a is even. Then

a(p) =a(cos2mp), pe T

and since cos27tp is the symbol of the convolution operator Hy
(one-dimensional discrete Laplacian), we can write A as

A =3(Hy).

Thus, replace Hy by the one-dimensional discrete Schrodinger operator
Hy 4+ V with ergodic potential to obtain an interesting class of ergodic
operators.
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Szegd Theorem. Results

Leading Term

The leading term of tr ¢(Ap) for ergodic operators is known.

Recall the notion of the Integrated Density of States (IDS) of an ergodic
operator A. Let

fo\ = |A|_1 25/\51\)
i

be the Normalized Counting Measure of eigenvalues {)\fA)}, of Ax. Then
there exists a non-random non-negative measure N known as the
Integrated Density of States (IDS) of A and such that for any continuous
and bounded function ¢ : R — C with probability 1
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Szegd Theorem. Results
Leading Term

Thus

im A er () = lim /q) YNA(dA)
—/q) ANA(dA) = /(p ))NE(dA).

This implies for A = a(H) with probability 1:

trp(Ax) = trg(an(H)) = [A] [ 9(AINA(dA)

= Al [ 9NA(AN) +o(1A]) = [ p(a(A)NE(dA) + o(A)
— [AE{goo(A)} + o(|A]) = |AE{(@(a(H)))oo} + o(IAI). |A] = .




Szegd Theorem. Results
Subleading Terms: Almost Periodic Underlying Operator and Smooth Symbols

Let H be the one dimensional discrete Schroedinger operator with
quasiperiodic potential: V = {v;}jcz, vj=V(¢j+w), V € ClBl+2 5pd

€ (0,1) is Diophantine, i.e., m|>C/IF, B>1,Vme Z VI € N.
Then we have Vz,dist{z,c(H)} > 1, > 2, A = [-M, M|

Y (Ga(w)); = \A|/ Goo(w

lil<m
+ri(aM+w) + r-(—aM + w) + o(1), M — oo,

where ry are continuous 1-periodic functions.

v

Thus, the O(1) subleading terms are as in classical case, however they are
almost periodic ("backward" and "forward").
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Szegd Theorem. Results

Subleading Terms: Random Underlying Operator and Smooth Symbol

The leading term in the above "stochastic Szegd theorem is of the form of
the Law of Large Numbers, i.e., of the order |A| and non-random. Thus a
natural guess is that if eigenvalues of ¢(ax(H)) are random enough, then

the subleading term is of the form the Central Limit Theorem, i.e., of the

order |A|'/2 and Gaussian distributed, but not the O(1) surface term.

Indeed, consider for simpliciry the case where

a(A) = A, g(A) = (A—2)7 L ie.,
p(a(H)) = G:=(H—-2)"", ¢(an(H)) = Gp = (Ha —2) "

are the resolvents of H and of its restriction Hp.
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Szegd Theorem. Results
Subleading Terms: Random Underlying Operator and Smooth Symbol (CLT)

Theorem

Let H= Hy + V be the Schrédinger operator whose potential is a
sequence of bounded i.i.d. random variables

V ={v}jez. vl < Vo
Assume z = x € R and 2(Vo+1)/|x| € (0,1). Then the random variable
|A|71/2(tr Go — |A[E{Goo})

converges in distribution as |A| := L — oo to the Gaussian random
variable v of zero mean and non-zero finite variance o> > 0.

Thus, the subleading term is now |A|/2 (of the order |A|'/? and
random) but not just independent of |A| as in the classical Szegé case.
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Szegd Theorem. Results

Subleading Terms: Random Underlying Operator and Smooth Symbols (CLT)

Remarks. i) It is known that

O'(HA) C O'(H) = [—2—|— Vo, 2+ Vo)], VA.

Thus the condition on x guarantees that the theorem is an analog of the
smooth case of the Szégo theorem.

ii) An analogous result is valid for certain classes of p 0o a € C!.

iii) It is of interest to find the "surface" (O(1)) term (now
"subsubleading"):

s (TMw) +s (T Mw)+0(e™?M), M —

where A = [—M, M] and the "forward" and "backward" terms sy are

Pastur (ILT) Szego-Erg
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Szegd Theorem. Results

Subleading Terms: Random Underlying Operator and Smooth Symbols (CLT)

si(w) =—(1—- Gy +1(w E Go,j(w)Gj +1(w).

J=Fo0

Note that the terms are random (cf. the almost periodic case).

It is worth mentioning that there was no a "serious" use of the spectrum
structure (ac, pp) of H so far. This, however, proves to be important the
cases where an O(1) term is either leading or subleading, which involve
non-smooth symbols.

Pastur (ILT) Szego-Erg Mainz, 5 — 6 September 18 / 38



Szegd Theorem. Results

Subleading Terms: Random Underlying Operator and Nonsmooth Symbols (no CLT)

Consider a(A) = xA(A), A € 0(H) and ¢(A) = A(1 — A), hence
A= P:=Ex(A) and

¢(a(H)) = P(1—P) =0, ¢(an(H)) = Pr(1a = Pa).
The example is related to the area law of quantum informatics (a toy

model)

We will use the following manifestation of the pure point spectrum
(Anderson localization) for one dimensional discrete Schrédinger operator
with random potential

E{|Pi|} < Ce VK, C <00,y >0.

The exponential (!?) bound is valid, in particular, if the probability law of
i.i.d. random potential has a bounded density.

Pastur (ILT) Szego-Erg Mainz, 5 — 6 September 19 / 38



Szegd Theorem. Results
Subleading Terms: Random Underlying Operator and Nonsmooth Symbols (no CLT)

Let H be the Schrédinger operator with random potential such that the
above exponential bound holds and A € o(H), N"(A) € (0,1) where N*
is the IDS of H. Then with probability 1

trPA(1y — Pp) =t (TMw) +t (T Mw) 4 0(1), M — .

= L SR =3 E IR

j=—00 k= Jj=0 k=—0c0

are non-zero random variables.

Remarks. i) No "volume" contribution, only "surface" one (a "toy" case
of the area law of quantum informatics)

i) V=0: Py =sinc(A)|j— k|/|j — k|, ") = O(logL), i.e., the
Widom-type asymptotics (violation of the area law).
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Szegd Theorem. Results

Entanglement Entropy of Free Fermions
This an important topic of quantum information theory dealing with
Spa =trh(Pp), h(x) = —xlogy x — (1 — x) logy (1 — x),

i.e., with the case of Szeg6 theorem where ¢ = h (non-smooth!), a = x,.

(i) Constant potential, moreover, convolution operators: Leschke, Sobolev,
Spitzer 13

Sa=ClogL+0(1), L=|A|=2M+1 — oo,
(i) Random potentials: P., Slavin 14, Elgart, P. Shcherbina 16.

SA:C2+O<1), L:‘A|:2M—i—l—>00,

Randomness kills quantum correlations (entanglement).
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Quantum Informatics. Emergence of the Area

Weak Disorder
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Quantum Informatics. Emergence of the Area Law

Stronger Disorder
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Szegd Theorem. Proofs

Toolkit
(i) Resolvent identity. Given selfadjoint and invertible A; and Aj:
(AL +A) 7 = (AL +A) LA (A — A)AL

(i If H=Hy+ V, |VJ‘ < W, O'(H) C [—2— Vo,2+ Vo],
G=(H-2)"1, ||G|]| <67 and 6 := dist(z, [-2 — Vo, 2 + V]) >0,
then

1Gik] < C(z2)e @K C <00, b>0, jk€Z.

Use (I) with Ay = Hy, A, =V — z, HH()H =2, H\/—ZH >
dist(z, [- Vo, Vo]) :=a > 2, < 6 > 0 to write

Gi=Y((H(V-2) ) (V-2 = Y <@a)l -2

1=0 I=|j—k|

thus C =2/(x —2)"! < o0, b=loga/2 > 0.
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Szegd Theorem. Proofs
Toolkit

(ii) If Go = (H|a —2)7Y, A=[-M,M], § >0, then
(GA)jk = Gjk — Gim+1(GA)mk — Gj,—m—1(GA)—m ks Jo k € A,

Use (I) with A1 = H, Ao = HA & HZ\A-
(iv) If 6 > 1, then

(GA)mk = —Guk(L+ Gumi1) t+0(e™M), M — o,
(GA)-mk = —Gmk(1+G y_1-m) 1+0(e ) M-

Use (iii) with j = M, (i) and |Gy m11], [(Ga)mk| < ||G|| < 67! to
estimate

|Gr,—m—1(GA)mk (14 Gums1)mk| < C(6— 1) te 2PM,

Mainz, 5 — 6 September 25/
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Szegd Theorem. Proofs

Toolkit
(v) Basic formulas

(Ga)jk = G — Gim+1G6mk  Gj,—m-1G-m,k
AT T T Gumer 1+ G

+0(e2M) j ke A — o,

use (iii) and (iv);

tr Go = Y G+ 4+ ™M o(e bl
jeA
use the previous formula for j = k and (ii) to obtain
M
(M)

sp = =1+ Gimams1) " Y Gamsn)Geny.
=M
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Szegd Theorem. Proofs

Constant Potential.

An example of the convolution operator, classical case of Szegd's theorem.

Here Gjx = Gj_«, Gj = G_j ({Gj«} is symmetric since H is real), hence,
by basic formula (ii)

tr Gp = |A’GO +sy+s-+ O(efb|A|), |A’ =2M+1 — oo,

0
S = —(1 + Gil)fl Z GjG,j.
j=%o0
This is a simple particular case of Szegé's theorem. To check use
1 e27ipJ
G =

—dp.
0 2cos27p —z P
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Szegd Theorem. Proofs

General Ergodic Case
Since H is ergodic, G = (H — z) ! is also egodic, hence
Gik(T°w) = Gjrak+a(w),

and by basic formula we obtain the relation

trGa =Y Gj+s.(TMw)+s (T Mw)+ 0(e" M),
JjeA

Al =2M +1 — oo,

having again the backward and forward terms a la Szegé and valid with
probability 1, where

1 0

si(w) = —mj:;m Gjo(w) G, (w).

are well defined random variables.
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Szegd Theorem. Proofs

General Ergodic Case

Indeed, we have by (ii) and by ergodicity

Z Gim(w)Gm1,j(w) = Z Gim () Gu1,5(w) + O(e72PM)

J—fOO

Y Go(TMw) Gy (TMew) + O(e2M)

j=—0o0
Besides, by ergodic theorem we have for the first term with probability 1

_ZAGJ'J'(O‘)) = ;\Goo(Tj) = |A[E{Goo} + o|A]), [A] = oo,

thus it gives the leading term a la Szegd, but not more in generall!
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Szegd Theorem. Proofs
Almost Periodic Case

Here v; = V(aj 4+ w), V € CIFI*2 is 1-periodic, a € (0,1) is Diophantine
ol —m| > C/IF, B>1,Yme Z,VI €N, and w € [0,1) (the
"randomness") parameter, hence

Gj(w) = G(&j + w), G(w) := Goo(w),
and (recall H. Weyl)

Y Gilw) = 3. Glaj+w)

JEA je—Mm
Since G is 1-periodic and of CIF1*2 we have by (i)
Gw) = Y, Gie?™, 1G)| = o1/ [1]P+2),

1eZ
and

M
Z Gj(w) = Z Glaj+w) = |A|Go + g+ (aM + w) + g (—aM 4 w),
JEA je—M
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Szegd Theorem. Proofs

Almost Periodic Case

where

gj:(w) — Z Q,ezm"“’i”"“’/2isin ol
1#£0

and since | sin 7tal| = |sin t(al — m)| > C|I| =P and |G| < C/1|?*IFl, the
series is absolutely convergent.
We obtain finally uniformly in w € [0,1) and for |A] — oo

1
tr Gp = A / Goo(w)dw + ri (T™Mw) + r (T Mw) + 0(e 1A,
0
ri(w) = s (w) + g+ (w)
The leading term is "nonrandom", since fol Goo(w)dw = E{Gpo} and the

subleading terms (a la Szeg6 and new) are bounded and "almost periodic"
in M.
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Szegd Theorem. Proofs

Random Case. CLT

A General CLT (a la S. Bernstein)

Theorem

Let {X;}jcz be i.i.d. random variables and Yy be a bounded Borelian
function of {X;}jcz. Assume that E{Y;} =0 and

Y E{]Y, — E{Y, |77, 1) < .
p=1
Where FP is the o-algebra generatd by {X; }J .. la,b] CZ. Then

=Yz E{YOY} < o0 and if 0® > 0 the normalized sum

(2/\/7 +1) 1/2 ZJ__ Y; converges in distribution to the Gaussian random
variable <y such that E{’)/} =0 and Var{y} := E{y?} — E?{y} = ¢?
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Szegd Theorem. Proofs

Random Case. CLT

For the above theorem see I.A.lbragimov, Yu.V.Linnik Independent and
Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen,
1986.

The theorem conditions are:
(a) the decay of correlations

E{|Yo — E{Yp| P2, }} < oo;
p=1

(b) the positivity of the variance 2.

We take X; = v;, Yo = G§, = Goo — E{Goo}-
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Szegd Theorem. Proofs

Random Case. Decay of Correlations

To check the condition of decay of correlations, set G(P) = G]VJ:O’ lil>p

and use the resolvent identity for R, = Goo — G(gg) and (ii):

|Rp’ =

Z GO.IVJ

lil>p

< Vos 't Y |Gyl = O(e™?P).

lil>p

Since E{Gog)|.7:pp} = Géo) we have

E{IY, —E{Y,| 77} = E{|R, — E{R,| 77, }|} = O(e™*).
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Szegd Theorem. Proof of CLT

Cramér-Rao Inequality

Theorem

Let {gj Jl-\’zl, t € | be i.i.d. random variables whose common probability
law has a density f;, ¢ : RV — R and ®; = ¢(¢},...,&). Then

Var{®,} : =E{®?} —E*{D,} >

d 2
(EE{@}) NF;
where

Ft:/<% Iogf}(x)>2ﬂ(><)dx:/dx (%ft(x)f/ft(x)dx

is the Fisher information.
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Szegd Theorem. Proofs
Cramér-Rao Inequality

Proof (single variable, N = 1). Use the Cauchy-Schwarz inequality

Var{n,} > (Cov{r,1,})*/Var{y,}

where

Var{n} = E{(1—E{n})’}
Cov{nmn,} = E{(n; —E{m})(n, —E{n,})}.

Take 17, = ¢(C,), 11, = %(Iog f:(¢,)). We obtain:

() = [ (R0 =0, Covlnng) = & [ o))

Pastur (ILT) Szego-Erg Mainz, 5 — 6 September 36 / 38



Szegd Theorem. Proof of CLT

Positivity of Variance

Take &, = tvj, t € [l —¢&,14¢]. Since it is easy to proof that
¢* = lim Var{Zu}, By = @M +1)712 T G
l<m

take @ = Ep. Then by (i)

dein
S EEM e = —(2M + 1)'2E{Ggw }

and

x) + xf'(x))?
F|t:1 :/(f( );_(x;( )) dx
thus
0? > (E{Gywo})/ Flis
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Szegd Theorem. Proofs

Positivity of Variance

One needs to prove:
E{G3w} >0, F; >0.

Examples.
(i) vo > 0, since by spectral theorem

2 :/U )(5H)oo(d7\)

A —x)? >0, x ¢ o(H).

(i) F1 = 0. Assume that the support of f is [a, b] and
0<f<oo, x€lab]. Then

Fi=0= f(x) +xf(x) =0= f(x) = —Clogx, [a,b] C[0,1].
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