The Anderson Model on the Bethe Lattice: Lifshitz Tails

Christoph Schumacher

TU Chemnitz, Germany

5 September 2016 / A trilateral German-Russian-Ukrainian summer school on Spectral Theory, Differential Equations and Probability

joint work with Francisco Hoecker-Escuti

- The Bethe lattice \mathcal{B}_k is an infinite simple tree graph of constant degree $k + 1 \ge 3$
- Cayley graph of non-abelian group $\langle a_0, \dots, a_k \mid a_j^2 = 1 \rangle$
- introduced 1935 by Hans Bethe

- The Bethe lattice \mathcal{B}_k is an infinite simple tree graph of constant degree $k + 1 \ge 3$
- Cayley graph of non-abelian group ⟨a₀,..., a_k | a²_j = 1⟩
- introduced 1935 by Hans Bethe

- The Bethe lattice \mathcal{B}_k is an infinite simple tree graph of constant degree $k+1 \ge 3$
- Cayley graph of non-abelian group ⟨a₀,..., a_k | a²_j = 1⟩
- introduced 1935 by Hans Bethe

- The Bethe lattice \mathcal{B}_k is an infinite simple tree graph of constant degree $k + 1 \ge 3$
- Cayley graph of non-abelian group ⟨a₀,..., a_k | a²_j = 1⟩
- introduced 1935 by Hans Bethe

- Γ : infinite simple undirected graph,e.g. $\Gamma = \mathbb{Z}^d$ or $\Gamma = \mathcal{B}_k$
- The discrete Laplace operator on (the nodes of) Γ:

$$\Delta_{\Gamma} \colon \ell^2(\Gamma) o \ell^2(\Gamma), \qquad (\Delta_{\Gamma} \varphi)(\mathbf{v}) \coloneqq \sum_{\mathbf{w} \sim \mathbf{v}} (\varphi(\mathbf{w}) - \varphi(\mathbf{v}))$$

- Γ : infinite simple undirected graph, e.g. $\Gamma = \mathbb{Z}^d$ or $\Gamma = \mathcal{B}_k$
- The discrete Laplace operator on (the nodes of) Γ:

$$\Delta_{\Gamma} \colon \ell^2(\Gamma) \to \ell^2(\Gamma), \qquad (\Delta_{\Gamma} \varphi)(\mathbf{v}) := \sum_{\mathbf{w}, \mathbf{v}} (\varphi(\mathbf{w}) - \varphi(\mathbf{v}))$$

The random potential

$$V^{\Gamma}_{\omega} \colon \ell^2(\Gamma) o \ell^2(\Gamma), \qquad (V^{\Gamma}_{\omega}\varphi)(\mathbf{v}) \coloneqq \omega_{\mathbf{v}}\varphi(\mathbf{v}),$$

where $\omega := (\omega_v)_{v \in \Gamma}$ is a vector of non-trivial, bounded, non-negative, i. i. d. random variables with ess inf $\omega_v = 0$

.

- Γ : infinite simple undirected graph, e.g. $\Gamma = \mathbb{Z}^d$ or $\Gamma = \mathcal{B}_k$
- The discrete Laplace operator on (the nodes of) Γ:

$$\Delta_{\Gamma} \colon \ell^2(\Gamma) \to \ell^2(\Gamma), \qquad (\Delta_{\Gamma} \varphi)(\mathbf{v}) := \sum_{\mathbf{w}, \mathbf{v}} (\varphi(\mathbf{w}) - \varphi(\mathbf{v}))$$

• The random potential

$$V^{\Gamma}_{\omega} \colon \ell^2(\Gamma) \to \ell^2(\Gamma), \qquad (V^{\Gamma}_{\omega}\varphi)(v) := \omega_v \varphi(v),$$

where $\omega := (\omega_v)_{v \in \Gamma}$ is a vector of non-trivial, bounded, non-negative, i. i. d. random variables with ess inf $\omega_v = 0$

The Anderson Hamiltonian on Γ

$$H^{\Gamma}_{\omega} \colon \ell^{2}(\Gamma) \to \ell^{2}(\Gamma), \qquad H^{\Gamma}_{\omega} := -\Delta_{\Gamma} + \lambda V^{\Gamma}_{\omega}$$

with coupling constant $\lambda \ge 0$

- Γ : infinite simple undirected graph, e.g. $\Gamma = \mathbb{Z}^d$ or $\Gamma = \mathcal{B}_k$
- The discrete Laplace operator on (the nodes of) Γ:

$$\Delta_{\Gamma} \colon \ell^{2}(\Gamma) \to \ell^{2}(\Gamma), \qquad (\Delta_{\Gamma} \varphi)(\mathbf{v}) \coloneqq \sum_{\mathbf{w} \in \mathcal{V}} (\varphi(\mathbf{w}) - \varphi(\mathbf{v}))$$

• The random potential

$$V^{\Gamma}_{\omega} \colon \ell^2(\Gamma) o \ell^2(\Gamma), \qquad (V^{\Gamma}_{\omega}\varphi)(v) := \omega_v \varphi(v),$$

where $\omega := (\omega_v)_{v \in \Gamma}$ is a vector of non-trivial, bounded, non-negative, i. i. d. random variables with ess inf $\omega_v = 0$

The Anderson Hamiltonian on Γ

$$H^{\Gamma}_{\omega} \colon \ell^2(\Gamma) o \ell^2(\Gamma), \qquad H^{\Gamma}_{\omega} := -\Delta_{\Gamma} + \lambda V^{\Gamma}_{\omega}$$

with coupling constant $\lambda \ge 0$

• Ergodicity implies almost sure spectrum $\Sigma = \sigma(H_{\omega}^{\Gamma})$ a.s.

$$\mathcal{N}^{\Gamma} \colon \mathbb{R} \to [0,1], \quad \mathcal{N}^{\Gamma}(E) := \mathbb{E}[\langle \delta_{\nu}, \mathbf{1}_{(-\infty,E]}(H^{\Gamma}_{\omega})\delta_{\nu}\rangle]$$

 evaluates to the expected number of energy levels below the energy threshold *E* ∈ ℝ per unit volume,

$$\mathcal{N}^{\Gamma} \colon \mathbb{R} \to [0,1], \quad \mathcal{N}^{\Gamma}(E) := \mathbb{E}[\langle \delta_{\nu}, \mathbf{1}_{(-\infty,E]}(H^{\Gamma}_{\omega})\delta_{\nu}\rangle]$$

- evaluates to the expected number of energy levels below the energy threshold *E* ∈ ℝ per unit volume,
- is thermodynamic limit of eigenvalue counting functions(Pastur–Shubin formula),

 $\mathcal{N}^{\Gamma} \colon \mathbb{R} \to [0,1], \quad \mathcal{N}^{\Gamma}(E) := \mathbb{E}[\langle \delta_{\nu}, \mathbf{1}_{(-\infty,E]}(H^{\Gamma}_{\omega})\delta_{\nu}\rangle]$

- evaluates to the expected number of energy levels below the energy threshold *E* ∈ ℝ per unit volume,
- is thermodynamic limit of eigenvalue counting functions(Pastur–Shubin formula),
- contains spectral information, e.g. *N*^Γ is a distribution function, and support of the corresponding measure= Σ = σ(H^Γ_ω) a.s.,

4 D N 4 B N 4 B N 4 B

 $\mathcal{N}^{\Gamma} \colon \mathbb{R} \to [0,1], \quad \mathcal{N}^{\Gamma}(E) := \mathbb{E}[\langle \delta_{\nu}, \mathbf{1}_{(-\infty,E]}(H^{\Gamma}_{\omega})\delta_{\nu}\rangle]$

- evaluates to the expected number of energy levels below the energy threshold *E* ∈ ℝ per unit volume,
- is thermodynamic limit of eigenvalue counting functions(Pastur–Shubin formula),
- contains spectral information, e.g. N^Γ is a distribution function, and support of the corresponding measure = Σ = σ(H^Γ_ω) a.s.,
- encodes geometric properties of the underlying space,
 e.g. E₀ := inf Σ = 0 ⇔ Γ is amenable.

For the Bethe lattice: $E_0 := \inf \Sigma = (\sqrt{k} - 1)^2 > 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Behavior of the IDS

at the bottom of the spectrum

Christoph Schumacher (TU Chemnitz)

Lifshitz Tails on the Bethe Lattice

Behavior of the IDS and the DoS

at the bottom of the spectrum

Anderson Hamiltonian: $H^{\Gamma}_{\omega} := -\Delta_{\Gamma} + \lambda V^{\Gamma}_{\omega}$ $\mathcal{N}^{\Gamma}(E_0 + E)$ "~" Euclidian lattice $\Gamma = \mathbb{Z}^d$ Bethe lattice $\Gamma = \mathcal{B}_k$ **F**3/2 $\lambda = 0$ $F^{d/2}$ $\exp(-E^{-d/2})$ $\lambda > 0$ (d = 3) $\mathcal{N}^{\Gamma}(E_0 + E)$ $\frac{\mathrm{d}}{\mathrm{d}E}\mathcal{N}^{\Gamma}(E_0 + E)$ E

Lifshitz tails

For the Bethe lattice:
$$E_0 := \inf \Sigma = (\sqrt{k} - 1)^2 > 0$$
.

Theorem (Lifshitz tails on the Bethe lattice)

Assume $\nu := \limsup_{\kappa \searrow 0} \kappa^{1/2} \log \left| \log \mathbb{P}(\omega_{\nu} \le \kappa) \right| < 1$ $(\nu \in \mathcal{B}_k)$. Then there exists $\varepsilon > 0$ such that, for all $E \in (0, \varepsilon)$,

$$\exp\bigl(-\exp(\varepsilon^{-1}E^{-1/2})\bigr) \leq \mathcal{N}^{\mathcal{B}_k}(E_0+E) \leq \exp\bigl(-\exp(\varepsilon E^{-1/2})\bigr)$$

and thus

$$\lim_{E\searrow 0}\frac{\log \log |\log \mathcal{N}^{\mathcal{B}_{k}}(E_{0}+E)|}{\log(E)}=-\frac{1}{2}$$

Note: $\nu < 1$ is an assumption on the distribution of the potential: roughly: $\mathbb{P}(\omega_{\nu} \leq \kappa) \gg \exp(-\exp(\kappa^{-1/2}))$ as $\kappa \searrow 0$, i. e. small values are not too improbable.

< ロ > < 同 > < 回 > < 回 >

Behavior of the IDS

at the bottom of the spectrum

Anderson Hamiltonian: $H^{\Gamma}_{\omega} := -\Delta_{\Gamma} + \lambda V^{\Gamma}_{\omega}$ $\mathcal{N}^{\Gamma}(E_0 + E)$ "~" Euclidian lattice $\Gamma = \mathbb{Z}^d$ Bethe lattice $\Gamma = \mathcal{B}_k$ $\lambda = 0$ $F^{d/2}$ **F**3/2 $\exp(-E^{-d/2})$ $\exp(-\exp(E^{-1/2}))$ $\lambda > 0$ (d = 3) $\mathcal{N}^{\Gamma}(E_0+E)$ - B Christoph Schumacher (TU Chemnitz) Lifshitz Tails on the Bethe Lattice Trilateral Summer School 10/17

Behavior of the IDS and the DoS

at the bottom of the spectrum

Anderson Hamiltonian: $H^{\Gamma}_{\omega} := -\Delta_{\Gamma} + \lambda V^{\Gamma}_{\omega}$ $\mathcal{N}^{\Gamma}(E_0 + E)$ "~" Euclidian lattice $\Gamma = \mathbb{Z}^d$ Bethe lattice $\Gamma = \mathcal{B}_k$ $\lambda = 0$ $F^{d/2}$ **F**3/2 $\exp(-E^{-d/2})$ $\lambda > 0$ $\exp(-\exp(E^{-1/2}))$ (*d* = 3) $\mathcal{N}^{\Gamma}(E_0 + E)$ $\frac{\mathrm{d}}{\mathrm{d}E}\mathcal{N}^{\Gamma}(E_0 + E)$

Tools on \mathbb{Z}^d :

- amenability approximation by finite balls:
- perturbation theory large spectral gap:
- Fourier transform abelian group:

 $\mathbb{Z}^{d}: \checkmark, \mathcal{B}_{k}: \mathcal{X}$ $\mathbb{Z}^{d}: \checkmark, \mathcal{B}_{k}: \mathcal{X}$ $\mathbb{Z}^{d}: \checkmark, \mathcal{B}_{k}: \mathcal{X}$

Tools on \mathbb{Z}^d :

- amenability approximation by finite balls:
- perturbation theory large spectral gap:
- Fourier transform abelian group:

We use

- Laplace transform of IDS $\mathcal{N}^{\mathcal{B}_k}$, Tauberian theorem
- discrete Feynman–Kac formula
- discrete Ismagilov–Morgan–Sigal formula

to reduce Lifshits tails behaviour to properties of ground state energies of Anderson models on finite symmetric rooted trees.

 $\mathbb{Z}^{d}: \checkmark, \mathcal{B}_{k}: \mathcal{X}$ $\mathbb{Z}^{d}: \checkmark, \mathcal{B}_{k}: \mathcal{X}$ $\mathbb{Z}^{d}: \checkmark, \mathcal{B}_{k}: \mathcal{X}$

A (1) > A (2) > A (2)

Finite symmetric rooted trees T_L

- Number of children: $k \ge 2$
- Length of tree: $L \in \mathbb{N}$
- root: 0
- Level of node $v \in T_L$: |v| = dist(0, v) + 1
- Advantage w. r. t. B_k: explicit formulas for all eigenfunctions and -values

Estimation of the random ground state energy

Consider

• Anderson model $H^{\mathcal{T}_L}_{\omega} := -\Delta_{\mathcal{T}_L} + V^{\mathcal{T}_L}_{\omega}$ on the tree \mathcal{T}_L

• the random ground state energy $E_{GS}^{L}(\omega) := \inf_{\|\varphi\|=1} \langle \varphi, H_{\omega}^{\mathcal{T}_{L}} \varphi \rangle$

不同 トイモトイモ

Estimation of the random ground state energy

Consider

• Anderson model $H^{\mathcal{T}_L}_{\omega} := -\Delta_{\mathcal{T}_L} + V^{\mathcal{T}_L}_{\omega}$ on the tree \mathcal{T}_L

• the random ground state energy $E_{GS}^{L}(\omega) := \inf_{\|\varphi\|=1} \langle \varphi, H_{\omega}^{\mathcal{T}_{L}} \varphi \rangle$

Theorem (random ground state energy on trees)

Assume $\nu < 1$. Then there are $\varepsilon > 0$ and $L^* > 1$ such that for all $L > L^*$ we have

$$\mathbb{P}\big(E_0 + \frac{\varepsilon}{(\log L)^2} \leq E_{GS}^L \leq E_0 + \frac{\varepsilon^{-1}}{(\log L)^2}\big) \geq 1 - \exp(-\varepsilon L).$$

(As before: $E_0 := (\sqrt{k} - 1)^2$)

< ロ > < 同 > < 回 > < 回 >

Estimation of the random ground state energy

Consider

• Anderson model $H^{\mathcal{T}_L}_{\omega} := -\Delta_{\mathcal{T}_L} + V^{\mathcal{T}_L}_{\omega}$ on the tree \mathcal{T}_L

• the random ground state energy $E_{GS}^{L}(\omega) := \inf_{\|\varphi\|=1} \langle \varphi, H_{\omega}^{\mathcal{T}_{L}} \varphi \rangle$

Theorem (random ground state energy on trees)

Assume $\nu < 1$. Then there are $\varepsilon > 0$ and $L^* > 1$ such that for all $L > L^*$ we have

$$\mathbb{P}\big(E_0 + \frac{\varepsilon}{(\log L)^2} \leq E_{GS}^L \leq E_0 + \frac{\varepsilon^{-1}}{(\log L)^2}\big) \geq 1 - \exp(-\varepsilon L).$$

(As before: $E_0 := (\sqrt{k} - 1)^2$) Adjacency operator:

$$A \colon \ell^2(\mathcal{B}_k) \to \ell^2(\mathcal{B}_k), \qquad (A\varphi)(v) := \sum_{w \sim v} \varphi(w), \qquad A = \Delta_{\mathcal{B}_k} + k + 1$$

< ロ > < 同 > < 回 > < 回 >

or: radially symmetric eigenfunctions of the adjacency matrix

Christoph Schumacher (TU Chemnitz)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

or: radially symmetric eigenfunctions of the adjacency matrix

or: radially symmetric eigenfunctions of the adjacency matrix

Non-radially symmetric eigenfunctions

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Consequences of the spectral properties of trees

spectral gap: |cos(^π/_{L+1}) - cos(^π/_L)| ≈ L⁻³on B_k instead of |cos(^π/_{L+1}) - cos(^{2π}/_{L+1})| ≈ L⁻²on Z^d

4 3 5 4 3

- spectral gap: $|\cos(\frac{\pi}{L+1}) \cos(\frac{\pi}{L})| \approx L^{-3}$ on \mathcal{B}_k instead of $|\cos(\frac{\pi}{L+1}) - \cos(\frac{2\pi}{L+1})| \approx L^{-2}$ on \mathbb{Z}^d
- low energy eigenfunctions suppress boundary effects

.

- spectral gap: $|\cos(\frac{\pi}{L+1}) \cos(\frac{\pi}{L})| \approx L^{-3}$ on \mathcal{B}_k instead of $|\cos(\frac{\pi}{L+1}) - \cos(\frac{2\pi}{L+1})| \approx L^{-2}$ on \mathbb{Z}^d
- low energy eigenfunctions suppress boundary effects
- location of the random ground state

Thank you for your attention!

크

< 17 ▶