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Psychophysical studies on loudness have so far examined the temporal weighting of loudness solely in

level-discrimination tasks. Typically, listeners were asked to discriminate hundreds of level-fluctuating

sounds regarding their global loudness. Temporal weights, i.e., the importance of each temporal por-

tion of the stimuli for the loudness judgment, were then estimated from listeners’ responses. Consistent

non-uniform “u-shaped” temporal weighting patterns were observed, with greater weights assigned to

the first and the last temporal portions of the stimuli, revealing significant primacy and recency effects,

respectively. In this study, the question was addressed whether the same weighting pattern could be

found in a traditional loudness estimation task. Temporal loudness weights were compared between a

level-discrimination (LD) task and an absolute magnitude estimation (AME) task. Stimuli were 3-s

broadband noises consisting of 250-ms segments randomly varying in level. Listeners were asked to

evaluate the global loudness of the stimuli by classifying them as “loud” or “soft” (LD), or by assign-

ing a number representing their loudness (AME). Results showed non-uniform temporal weighting in

both tasks, but also significant differences between the two tasks. An explanation based on the differ-

ence in complexity between the evaluation processes underlying each task is proposed.
VC 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4939959]
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I. INTRODUCTION

Psychophysical reverse-correlation (Ahumada and

Lovell, 1971; Beard and Ahumada, 1998; Ahumada, 2002),

also termed perceptual weight analysis (Berg, 1989), has

been shown to provide a unique framework for identifying

decision strategies underlying various perceptual evaluations

(see Dai and Micheyl, 2010; Murray, 2011). In auditory

research, this method has been successfully employed to

examine the spectral weighting of individual components of

complex sounds (e.g., Leibold et al., 2007; Leibold et al.,
2009; Jesteadt et al., 2014), the temporal weighting of loud-

ness for time-varying sounds (e.g., Pedersen and Ellermeier,

2008; Oberfeld and Plank, 2011; Ponsot et al., 2013), or

spectro-temporal weights (Oberfeld et al., 2012). For the

study of temporal loudness weighting, time-varying sounds

composed of several temporal portions varying in level ran-

domly and independently from trial-to-trial are typically

judged in terms of global loudness (i.e., the loudness of the

sound as a whole) over several hundred trials. Assuming that

listeners’ overall loudness judgments are based on a linear

combination of each segment level, the relative weight of

each portion can then be estimated, for example, using multi-

ple logistic regression (Oberfeld, 2008). The weights thus

obtained indicate how strongly the global loudness is

impacted when the level of a temporal portion of the sound

is changed. For stimuli with a flat level profile (i.e., all tem-

poral portions of the sound are drawn from distributions

having the same mean level), these studies consistently

showed that the first 100–300 ms receive a higher weight

than later portions of the stimulus (i.e., a primacy effect)

(Ellermeier and Schr€odl, 2000; Oberfeld, 2008; Pedersen

and Ellermeier, 2008; Dittrich and Oberfeld, 2009; Rennies

and Verhey, 2009; Oberfeld and Plank, 2011; Oberfeld

et al., 2012). This means that, for example, a 1-dB increase

in the level of the first 100 ms of the sound causes a stronger

increase in global loudness than a 1-dB increase in the level

of the final 100 ms. Some studies also found a small recency

effect (Pedersen and Ellermeier, 2008; Ponsot et al., 2013),

but this effects appeared to be weaker than the primacy

effect (Dittrich and Oberfeld, 2009; Oberfeld and Plank,

2011). The observed non-uniform temporal weights are an

important outcome for research in loudness, because primacy

and recency effects are incompatible with the uniform tempo-

ral weighting assumed in current indicators of loudness such

as LAeq (i.e., the A-weighted equivalent sound pressure level;

ANSI S1.4, 1983) or N5 (i.e., the 95th percentile of the loud-

ness distribution; Zwicker and Fastl, 1999). For example, a 1-

dB increase in the level of the first 100 ms of a sound would

result in the same increase in LAeq as a 1-dB increase in any

other temporal portion of the signal if the level and spectral

content is equal for the two temporal portions. In this context,

Oberfeld and Plank (2011) demonstrated that adding temporal

weights to current loudness indicators provides significantly

better predictions of the psychophysical data.

Previous studies on the temporal weighting of loudness

used sample (or level) discrimination tasks (Berg and

Robinson, 1987). In these tasks, the levels of the different

temporal portions of the sound (temporal segments) area)Electronic mail: ponsot@ircam.fr
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drawn from random distributions. In the case where a one-

interval task is used, there are two level distributions, one

with a higher mean level [e.g., 61 dB sound pressure level

(SPL)], and one with a lower mean level (e.g., 59 dB SPL)

(e.g., Dittrich and Oberfeld, 2009). On each trial, the seg-

ment levels of the stimulus are all commonly drawn either

from the “high” or from the “low” distribution (selected ran-

domly). The listener’s task is to decide whether the pre-

sented sound was rather “loud” (i.e., originated from the

higher level distribution) or rather “soft” (i.e., originated

from the lower level distribution). Thus, it corresponds to a

one-interval, two-alternative forced-choice (1I, 2AFC) level-

discrimination task (i.e., an absolute identification task;

Braida and Durlach, 1972). In such a task, responses can be

classified as being correct or incorrect so that the accuracy or

the sensitivity can be computed. If each temporal segment

provides the same amount of information concerning the

correct response (which was typically the case in previous

experiments), then the “ideal” strategy (maximizing the

accuracy) in this task would be to apply identical weights to

all temporal portions of a sound (Berg, 1989). However, as

discussed above, listeners’ weighting strategies are found

to be significantly different from this flat “ideal weighting

strategy.” The use of sample discrimination tasks with two-

interval paradigms is also very common (e.g., Rennies and

Verhey, 2009; Oberfeld and Plank, 2011), and results in very

similar temporal weights to those described for one-interval

tasks (Oberfeld and Plank, 2011).

These findings raise the questions: How can the per-

formance in the level-discrimination task be reconciled with

loudness judgments that are typically obtained using more

“traditional” loudness judgment tasks, such as magnitude

estimation (e.g., Stevens, 1956)? That is, to what extent do

the weighting patterns observed in level-discrimination tasks

reflect the temporal weighting underlying a loudness evalua-

tion in, for example, a magnitude estimation task? The aim

of the present study was to address these issues by investi-

gating whether the pattern of temporal weights estimated in

a level discrimination (LD) task could also be found in an

absolute magnitude estimation (AME) task (Hellman and

Zwislocki, 1963).

Our hypothesis regarding this research question was that

the temporal weighting pattern observed in the AME task

should be similar to the pattern observed in the LD task.

Thus, we expected a pronounced primacy effect and prob-

ably a weaker recency effect. Indeed, the internal decision

variable used by observers in LD tasks as in AME tasks

should be based on global loudness in both cases. As dis-

cussed by Oberfeld and Plank (2011), in the sample discrimi-

nation tasks, the listeners are typically instructed to classify

each sound as being either “soft” or “loud,” that is, to evalu-

ate the global loudness of each sound with respect to the

loudness of the previous sounds presented in a given block.

Thus, it seems reasonable to assume that the subjective qual-

ity or sensory continuum on which listeners base their deci-

sions in sample discrimination tasks is loudness (cf., Green

and Swets, 1966; Durlach and Braida, 1969).

In the present study, two experiments were conducted.

In within-subjects designs (to ensure good statistical power

in the presence of interindividual differences), temporal

loudness weights were measured and compared between

AME and LD tasks. A number of experimental constraints

were considered to accurately compare the weighting pat-

terns between the two tasks, which deserve to be mentioned

here. A first concern was related to the choice of the experi-

mental procedures and the presentation paradigms. Since the

AME task is a procedure where the stimuli are presented and

evaluated one by one, we opted for an LD task based on a

one-interval paradigm. A second experimental concern was

that the stimuli had to induce sufficient variability in the

magnitude estimates to estimate the weights. For this reason,

the segment levels were drawn from normal distributions

with comparably large standard deviations (SD¼ 5 dB),

while previous studies used SDs between 2 and 3 dB.

Finally, to minimize undesired psychoacoustical interaction

and transient effects between consecutive segments caused

by these large level modulations (such as forward masking

caused by a loud segment preceding a much softer segment),

the segments were rather long (250-ms), and cos2 functions

were used to smooth intersegment amplitude variations (for

further details, see the procedure section below). Thus, the

stimuli presented in this study were comparably long noises

(3 s) fluctuating randomly and slowly (4 Hz) in level. In com-

parison, previous studies presented shorter sounds (<1.5 s

total duration) with shorter temporal segments (typically

100 ms, corresponding to 10-Hz random level modulations)

and smaller level fluctuations (e.g., SDs of 2 dB).

In the first experiment, the stimuli presented in the two

tasks varied around different mean levels. In the LD task, the

segment levels were drawn from random distributions with

means at 63.5 dB SPL (“low” distribution) and 66.5 dB SPL

(“high” distribution) while in the AME task, random distribu-

tions with means at 54, 61, 68, and 75 dB SPL were used. We

introduced this large range of levels (21 dB) in the AME task

to ensure that subjects could easily judge the loudness of the

stimuli by using different numbers. The second experiment

was conducted to explore whether the results obtained in the

first experiment were related, at least in part, to the larger

range of stimuli levels used in the AME task compared to the

LD task. To answer this question, in the second experiment,

the stimuli presented in the AME task varied around the same

mean levels (63.5 and 66.5 dB SPL) as in the LD task.

II. EXPERIMENT 1

A. Materials and method

1. Participants

Seven subjects (4 women, 3 men; age 23–31 years) par-

ticipated voluntarily. All reported normal hearing. They

gave their informed written consent according to the

Declaration of Helsinki prior to the experiment and were

paid for their participation. The participants were naive with

respect to the hypotheses under test.

2. Stimuli

The stimuli were white (broadband) noises lasting 3 s.

Stationary (constant-intensity) noises were used in the first
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session of the AME task, presented diotically with levels of

54, 61, 68, or 75 dB SPL. Otherwise, all the stimuli were

level-fluctuating noises made of 12 consecutive 250-ms sta-

tionary noise segments with levels drawn independently

from normal-truncated distributions (SD¼ 5 dB, restricted to

Mean 6 2.5 SD). As mentioned above, the variability in level

of these noises was chosen to be sufficiently large to produce

variability in participants’ judgments, so that the temporal

weights could be estimated. While 50-ms linear ramps were

imposed on the amplitude envelopes at the onset and the off-

set of the stimuli, inter-segment level variations were

smoothed using 100-ms temporal windows (half-periods of

cos2 functions), to avoid unwanted abrupt changes of sound

intensity or temporal loudness masking effects. On each

trial, the levels of all segments were randomly and independ-

ently drawn from the same normal distribution. In the AME

task, the mean of the distribution was 54, 61, 68, or 75 dB

SPL, presented with equal probability. In the LD task, the

distribution means were 63.5 or 66.5 dB SPL, selected with

equal probability.

3. Apparatus

The stimuli were generated at a sampling rate of

44.1 kHz with 16-bit resolution using MATLAB. Sounds were

converted using an RME Fireface 800 soundcard and pre-

sented diotically through headphones (Sennheiser HD 250

Linear II). Sound level was calibrated using a Br€uel & Kjær

artificial ear (type 4153, IEC318). Participants were tested

individually in a double-walled IAC sound-insulated booth

at IRCAM.

4. Procedure

The experiment was divided into two parts, which con-

sisted of two different psychophysical tasks, as described

below. The participants performed the two parts one after

the other; their order of presentation was counterbalanced

between participants. Each part involved several sessions

scheduled on different days; part LD refers to the level dis-

crimination (LD) task that consisted of three 1-h sessions,

part AME refers to the AME task, which was divided into

five 1-h sessions.

In part LD, a 1I, 2AFC procedure was employed. On

each trial, a sound was presented with the segment levels

drawn either from the “high” or the “low” distribution (see

above), randomly chosen with a priori equal probability. The

participant decided whether the stimulus type was “loud” or

“soft.” Listeners were explicitly asked to consider the global
loudness of the stimuli when making their judgment, corre-

sponding to the judgment of the loudness over the entire dura-

tion of the sound (Pedersen and Ellermeier, 2008; Ponsot

et al., 2013). Each session comprised five blocks of 90 trials

each. The answers collected during the first session of this

part, which served as a training session, were removed from

the analysis. Thus, a total of 900 trials were collected per lis-

tener in this task. The participants did not receive any trial-by-

trial feedback, but the percentage of correct identifications of

the “low”/“high” distributions (defined as corresponding to

“soft”/“loud” responses, respectively) were displayed on the

computer screen at the end of each block to ensure sustained

attention on the task (Ponsot et al., 2013).

In part AME, an AME procedure was used. No stand-

ard/modulus corresponding to a certain number was pro-

vided. The task was simply to give a number best

representing the global loudness of each sound, regardless

of the numbers assigned to previous stimuli (Hellman,

1976). There was no training session in this part. In the first

session of the AME part, the stationary broadband noises

were presented to the participants during 160 trials (40 rep-

etitions of each stimulus), in random order. The participants

produced magnitude estimates of loudness using their own

scale. Level-fluctuating noises were then presented in the

four sessions that followed. In these sessions, each trial

consisted of a level-fluctuating noise drawn from one of

the four defined mean levels (see above). Each “level-

fluctuating” session comprised 250 trials, divided into three

blocks (90-80-80 trials; the 10 first estimates of the first

block served as a training and were removed from the anal-

ysis). Thus, a total of 960 “level-fluctuating” trials were

collected per listener in the AME task (240 trials per mean

level and listener).

5. Fitting loudness functions

The magnitude estimates provided by each participant

during the AME task were fitted with simple loudness func-

tions. First, the levels (in dB SPL) of the stimuli (both sta-

tionary and level-fluctuating noises) presented in this part

were converted into equivalent pressure units (in Pascals)

using the following formula:

peq ¼ p010Leq=20; (1)

where p0¼ 20 lPa and Leq denotes the energy-equivalent

sound pressure level of the entire stimulus (in dB). The mag-

nitude estimates of the listeners were then fitted individually

using a power function, which represents one of the most

simple loudness functions (cf., Suzuki and Takeshima, 2004;

Oberfeld et al., 2012)

E ¼ kpa
eq; (2)

where E is the magnitude estimate (i.e., number) produced

by the participant, and peq is the equivalent pressure of the

stimulus. The constants k and a were estimated by non-linear

regressions for each listener, for stationary and level-

fluctuating noises separately. Thus, a total of 14 regressions

were conducted. Individual loudness exponents a estimated

by the regressions conducted on level-fluctuating noises esti-

mates were used afterwards in the decision models to esti-

mate temporal weights in both the AME and the LD tasks

(see below).

6. Decision models

Multiple regression analyses were used to estimate the

temporal weights in the two tasks. In previous studies, the

predictors used in the models were simply based on the

sound pressure level of the temporal segment levels (e.g.,
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Oberfeld and Plank, 2011). However, because of the large

variations imposed on the segment levels of the stimuli in

the present study, we decided to use predictors based on

loudness in order to match more accurately the human per-

ceptual intensity scale. The loudness of each segment Ni was

estimated using the individual loudness exponents a obtained

from the regressions conducted on the estimates attributed to

level-fluctuating noises in the AME task (the individual val-

ues of a were taken from the fitted level-fluctuating noises

loudness functions are reported in Table I)

Ni ¼ pa
i ; (3)

where pi is the equivalent pressure (in Pa) of the ith segment,

computed according to Eq. (1). Thus, 12 predictors, corre-

sponding to the loudness values of the 12 segments, were

used in the regression models to estimate the weights in the

two tasks. In the AME task, the dependent variable (DV)

was the magnitude estimate (number) given by the partici-

pants to evaluate global loudness. In the LD task, the DV

was the binary response (“soft” or “loud”) entered by the

participants to evaluate global loudness.

In the AME task, estimates were assumed to be a linear

combination of the loudness values of the 12 segments.

Segment levels Li (in dB) were first converted into pressure

units pi (in Pa) using Eq. (1). Second, using Eq. (3), we esti-

mated their equivalent loudness Ni. Therefore, the estimate

(E) could be expressed as the linear combination of each seg-

ment loudness Ni

EðNÞ ¼
X12

i¼1

wiNi þ c; (4)

where N is the vector of segment loudness values, Ni is the

loudness of segment i, wi is the perceptual weight assigned

to segment i, and c is a constant.

The decision model chosen to account for the LD task

was similar to previous studies on temporal weighting of loud-

ness (e.g., Oberfeld and Plank, 2011), except that the loudness

values rather than the sound pressure levels of the segments

were used as predictors. The loudness of each segment (Ni)

was estimated using Eq. (3), i.e., using the exponents inferred

from the estimates given to fluctuating-noises in the AME

task. The decision variable D was also assumed to be a linear

combination of the loudness of the 12 segments,

DðNÞ ¼
X12

i¼1

wiNi þ c; (5)

where N is the vector of segment loudness values, Ni corre-

sponds to the loudness of the ith segment, the wi are the per-

ceptual weights, and c is a constant. The model assumes that

a listener responds that the noise presented on a given trial

was loud rather than soft if D(N)> 0, and that

p ‘‘loud’’ð Þ ¼ eD Nð Þ

1þ eD Nð Þ ; (6)

which corresponds to a logistic regression model

(McCullagh and Nelder, 1989).

These two decision models are strictly identical except

that the dependent variable is continuous in the first model

(AME task) and binary in the second model (LD task).

Multiple logistic regression was thus used to estimate the

temporal weights in the LD task (Pedersen and Ellermeier,

2008; Oberfeld and Plank, 2011; Ponsot et al., 2013), and

multiple linear regression was used in the AME task.

Regressions were conducted separately for each listener and

task. For each task, the twelve regression coefficients wi

were taken as the twelve temporal weights. The weights

were normalized individually so the sum of their absolute

values was 1 (Kortekaas et al., 2003). Statistical analyses

were conducted with R (R Core Team, 2015)

B. Results

1. Loudness functions

Magnitude estimates were obtained for both stationary

and level-fluctuating sounds in the AME task of experiment

1 for each listener. As an example, the results obtained

for one subject (S7) are reported in Fig. 1. Overall, subjects

were well able to produce numbers not only reflecting

the mean level of the stimuli but also reflecting level-

modulations that were introduced: four overlapping scatter-

plots could be observed for each subject. Power functions

were used to fit the magnitude estimates of the stationary

noises and the level-fluctuating noises separately (see

above). These fits correspond to the black line and the grey

line as plotted in Fig. 1 for S7, respectively. The parameters

of each individual power function, estimated using non-

TABLE I. Parameters of the individual loudness functions (a, k) estimated by fitting non-linear power functions to the numbers assigned to both constant and

level-fluctuating noises in the AME task of experiment 1. Columns represent listeners (S1–S7). For each fitted model, ordinary-R2 obtained by the regression

is indicated as a measure of goodness-of-fit.

Experiment 1

S1 S2 S3 S4 S5 S6 S7 Average SD

Constant noises k 31.73 21.48 206.27 16.64 2.48 24.39 106.29 58.47 73.33

a 0.53 0.45 0.57 0.34 0.28 0.72 0.62 0.50 0.16

R2 0.78 0.75 0.90 0.80 0.87 0.87 0.88 0.83 0.06

Fluctuating noises k 19.2 10.16 122.71 14.81 9.89 10.34 97.55 40.67 48.12

a 0.36 0.29 0.45 0.33 0.2 0.56 0.61 0.39 0.15

R2 0.66 0.78 0.86 0.64 0.61 0.77 0.90 0.74 0.11
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linear least square fits, are reported in Table I. Except for S5,

who deliberately and notably changed his scale between the

first (stationary noises) and the following sessions in the

AME task (level-fluctuating noises) (indeed, the subject told

the experimenter he wanted to use another scale with greater

numbers—as it can be seen from the change of intercept

reflected by the parameter k in Table I), similar loudness

function parameters (k and a) were obtained for stationary

and level-fluctuating noises. The goodness of fit of these

non-linear regressions, evaluated in terms of the proportion

of variance accounted for (R2), was reasonably high. It

was not significantly higher for stationary than for level-

fluctuating noises [t(6)¼ 2.286, p¼ 0.062]. Loudness expo-

nents a (see Table I) were in line with the values reported

in the literature for white noise stimuli (e.g., Can�evet et al.,
2003; Teghtsoonian et al., 2005). These exponents were

smaller for level-fluctuating noises than for stationary noises

for every subject, leading to a significant difference

[t(6)¼ 3.911, p¼ 0.008]. Because the range of level was

slightly larger for fluctuating noises than for stationary

noises due to the random distributions (as can be seen in

Fig. 1), this result is consistent with the reported outcome

that the exponent of the loudness function becomes smaller

when the range of stimuli level variation is increased (for a

review, see Arieh and Marks, 2011). Finally, because the

subjects were free to use their own response scale in the

AME procedure, comparably large inter-individual differen-

ces were found regarding the multiplicative constant k (see

the values reported in Table I), compatible with the literature

(Hellman and Meiselman, 1988). Values of k were smaller

for fluctuating noises than for stationary noises, except for

S5 who deliberately changed his scale.1

2. Temporal weighting patterns

As explained above, the exponent a of the loudness

functions of fluctuating noise obtained for each subject was

fed into the regression models to estimate the temporal

weights in each task. The temporal weights were then

obtained for the seven subjects in the two tasks. The aver-

aged temporal weights obtained in the two tasks are pre-

sented in Fig. 2. As noted above, an “ideal observer” would

apply uniform weights to the 12 segments (at least in the

LD task), because each temporal segment element provides

the same amount of information concerning the “correct”

response (Berg, 1989). The data presented in Fig. 2 revealed

significant deviations from this uniform weighting pattern,

as indicated by the confidence intervals of the weights that

do not contain the horizontal black line corresponding to uni-

form weighting. Moreover, the weighting patterns obtained

in the two tasks were rather different. In the AME task, a

clear primacy effect but no recency effect was observed

whereas in the LD task a small recency and a weaker pri-

macy effect could be noticed.

The normalized weights were analyzed with a

repeated-measures analysis of variance (rmANOVA) using

a univariate approach, with the correction for the degrees of

freedom of Huynh and Feldt (1976) where applicable. The

Huynh-Feldt correction factors ð~eÞ are reported. Unless

otherwise specified, all the tests were two-tailed and used a

probability level of 0.05 to test for significance. Effect sizes

are reported using partial eta-squared, gp
2. The within-

subjects factors were segment and task. The effect of

segment was significant [F(11, 66)¼ 3.509, p¼ 0.032,

FIG. 1. (Color online) Raw magnitude estimates produced by one subject

(S7) in the AME task of experiment 1. Subjects evaluated the global loud-

ness of stationary noises and level-fluctuating noises at different mean lev-

els. Estimates are plotted on a log-scaled y-axis as a function of the Leq of

the stimuli (asymmetric distributions of cloud of dots around the levels of

stationary noises can thus be observed since the Leq is dominated by seg-

ments with higher sound pressure level). Separate power functions were fit-

ted to the MEs for constant noises estimates (grey line) and for level-

varying noises estimates (black line). Parameters of the loudness functions

are reported in Table I for the different subjects.

FIG. 2. (Color online) Mean normalized temporal weights for both tasks of

experiment 1, presented as a function of the segment position (1–12) are

used for the level discrimination (LD) task and asterisks are used for the

absolute magnitude estimation (AME) task. Shaded areas correspond to

95% confidence intervals. The horizontal dotted line represents the uniform

temporal weighting pattern of an “ideal observer” in the LD task.
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gp
2¼ 0.369, ~e¼ 0.30], showing that the segments did not

receive a uniform weighting. A significant segment� task

interaction was found [F(11, 66)¼ 5.014, p< 0.001,

gp
2¼ 0.455, ~e¼ 1.0], supporting the view that a different

weighting was applied in the two tasks. As can be observed

in Fig. 2, larger weights were applied to the first segments

of the stimuli in the AME task, while moderately larger

weights were applied to the first segment and to the final

three segments in the LD task. Due to the weights normal-

ization, there was of course no significant effect of

task [F(1, 6)¼ 1.000, p¼ 0.336, gp
2¼ 0.143]. Additional

ANOVAs with segment as a within-subjects factor were

performed for each task separately. For the AME task, a

significant effect of segment confirmed the presence of

non-uniform weights [F(11, 66)¼ 6.781, p< 0.001, gp
2

¼ 0.531, ~e¼ 0.83]. For the LD task, the effect of segment

was not significant [F(11, 66)¼ 2.018, p¼ 0.149, gp
2

¼ 0.252, ~e¼ 0.27]. One may notice the unexpected higher

weight obtained for the fifth segment compared to other

segments situated in the middle section of the stimulus. We

have no explanation for this result.

Deviations from the flat weighting pattern were quanti-

fied on an individual basis by computing the coefficient of

variation CV of the 12 weights (SD/M), for each listener and

each task (see Oberfeld and Plank, 2011). The mean CV was

lower in the LD task (M¼ 0.45, SD¼ 0.27) than in the AME

task (M¼ 0.54, SD¼ 0.16), indicating slightly more uniform

weights in the LD task, but the difference was not significant

[t(6)¼ 1.058, p¼ 0.331]. One subject (S3) showed particu-

larly strong primacy effects in the two tasks, and higher CVs

than the remaining subjects.

3. Predictive power of the decision models

The goodness of fit of the decision models was eval-

uated using the area under the ROC curve (AUC) for the

models of the LD task, which is an index of the predictive

power of the logistic regression model (Dittrich and

Oberfeld, 2009). The proportion of variance (R2) accounted

for was used in the AME task. Fair to good model predic-

tions were found for the two tasks: for the LD task, AUC

ranged from 0.81 to 0.93 (M¼ 0.87, SD¼ 0.036). For the

AME task, R2 ranged from 0.61 to 0.90 (M¼ 0.74,

SD¼ 0.11).

4. Increased predictive power by including temporal
weights

The benefit of using estimated temporal weights to pre-

dict loudness was evaluated in the two tasks. This was done

by comparing different models to predict the present results:

Restricted models containing only Leq as predictor were

compared with full models containing Leq plus the twelve

temporal weights as predictors (see Dittrich and Oberfeld,

2009; Oberfeld and Plank, 2011). The results are reported in

Table II.

In the LD task, the AUC of the full model was signifi-

cantly higher than the AUC of the restricted model,

[t(6)¼ 2.607, p¼ 0.040]. Although this difference in AUC is

small, Cohen’s dz (Cohen, 1988) indicates a large effect size

(dz¼ 0.985). Individual likelihood-ratio tests were conducted

to compare the goodness-of-fit of the full and the restricted

models (see Oberfeld and Plank, 2011). A significantly better

goodness-of-fit (p< 0.05) was obtained with the full model

for all subjects but S4 and S5, who correspond to those hav-

ing the more flat weighting patterns (i.e., smaller CVs).

In the AME task, the R2 of the full model was also sig-

nificantly higher than the R2 of the restricted model [t(6)

¼ 4.098, p¼ 0.006]. The effect size was large, dz¼ 1.549.

F-tests on individual data showed that a significantly better

goodness-of-fit was obtained with the full model for subjects

S1, S3, S6, and S7 (p< 0.05).

Overall, these results indicate a significant benefit of

using the temporal weights to predict judgments both in the

LD task and in the AME task. However, the AUC and R2

only increased by small factors (2% and 1%, respectively).

The likely reason for the small improvement by including

temporal weights in the AME task is the large variation in

overall loudness due to the variation of mean level from 54

to 75 dB SPL. Indeed, this 21 dB variation in level, which is

completely captured by the Leq, accounts for the greatest part

of the variance of the magnitude estimates. Even with the

rather large SD of the level perturbations, the variation

caused by the level fluctuations around the mean segment

level is of course weaker than the effect of the mean level.

To examine the “real” improvement of considering temporal

weights in the models for the AME task (by setting aside this

large variation in mean level), additional weight analyses

were conducted separately per mean level in the AME task.

TABLE II. Goodness of fit of full models (containing as predictors the Leq and the 12 temporal weights) and restricted models (containing only the Leq as pre-

dictor) used to predict individual loudness judgments obtained in each task of experiment 1. Different indexes were employed to compare the models in the

two tasks: R2 for the AME task, AUC for the LD task. Outputs of likelihood-ratio tests (AUC) and F-tests (R2) are reported to indicate significant improve-

ments of the full model containing temporal weights as compared to the restricted model in each case. Columns represent listeners (S1–S7).

Experiment 1

Goodness-of-fit index (Task) Model S1 S2 S3 S4 S5 S6 S7 Average SD

AUC (LD Task) restricted 0.881 0.847 0.841 0.878 0.882 0.877 0.922 0.876 0.027

full 0.892 0.869 0.903 0.884 0.890 0.889 0.937 0.895 0.022

p-value 0.003 0.001 <0.001 0.335 0.071 0.001 0.001

R2 (AME Task) restricted 0.652 0.777 0.851 0.638 0.608 0.761 0.895 0.740 0.111

full 0.665 0.782 0.869 0.641 0.614 0.767 0.901 0.749 0.113

p-value 0.001 0.063 <0.001 0.756 0.268 0.013 0.001
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5. Additional analyses per mean level in the AME task

We conducted separate regressions for each mean level

with the results obtained in the AME task. The mean tempo-

ral weighting patterns thus obtained for each level are pre-

sented in Fig. 3.

An rmANOVA indicated a significant effect of segment

[F(11, 66)¼ 4.900, p< 0.001, gp
2¼ 0.450, ~e¼ 0.97]. The

level� segment interaction was not significant [F(33,

198)¼ 1.522, p¼ 0.071, gp
2¼ 0.203, ~e¼ 0.71]. These results

support what was observed in the overall analysis. The

segments did not receive a uniform weighting, but rather a

primacy effect was observed. Figure 3 shows that this

weighting process depended descriptively (although not sig-

nificantly) on the mean level: the weighting patterns esti-

mated at 61, 68, and 75 dB SPL exhibit primacy effects,

while a flat pattern was observed at 54 dB SPL, i.e., the low-

est mean level employed in the AME task.

We then compared the goodness of fit of the full and re-

stricted models based on these weights obtained for each

mean level. The proportions of variance accounted for by the

models are reported at each mean level in Table III. Of

course, the mean R2 values are this time much lower than in

the overall analysis presented above, but the data show large

increases in R2 when adding the temporal weights to the de-

cision models (107%, 196%, 57%, and 31% for each of the

mean levels in ascending order).

C. Discussion

In experiment 1, the temporal weights of loudness were

measured for the same participants in two psychophysical

tasks, an LD task and an AME task. The loudness exponents

estimated for each observer in the AME task were employed

in the decision models to estimate the temporal loudness

weights. Especially for the AME task, where the mean sound

pressure level varied across a range of 21 dB, this procedure

based on individual loudness values is in our view superior

to the analyses based on sound pressure level used in most

previous studies. Descriptively, additional separate analyses

conducted in the AME task for the different mean levels

showed slightly more uniform temporal weights at low lev-

els. However, the effect of mean level on the weights was

not significant and therefore, this aspect remains to be spe-

cifically addressed in future studies.

Overall, the data from experiment 1 show that listeners

assigned significantly non-uniform temporal weighting pat-

terns in both tasks. This is an interesting finding because the

sound duration (3 s) was considerably longer than in previ-

ous studies. Contrary to our hypothesis, there was a signifi-

cant difference between the weighting patterns in the LD

and the AME task. On average, participants assigned higher

weights to the first three segments compared to later seg-

ments in the AME task (i.e., a primacy effect). In the LD

task, we observed both a primacy effect and a recency effect.

How could these different temporal weighting strategies be

explained? One potential explanation is based on the differ-

ence between the stimuli presented in the two tasks. As

explained above, we deliberately presented a much larger

variation in mean level in the AME task than in the LD task,

to ensure that subjects could easily do the task. The means of

the four level distributions were separated by 7 dB, which is

more than the SD of 5 dB, and covered a range of 21 dB. In

contrast, in the LD task the means of the two level distribu-

tions differed by only 3 dB. For this reason, one could argue

that the participants were influenced by the range of level

variations of the stimuli. To test the hypothesis that the

FIG. 3. Normalized averaged temporal weights for the AME task of experi-

ment 1, from the additional analyses conducted at each mean level

separately.

TABLE III. Comparison between full and restricted models at each mean level in the AME task of experiment 1. The full models contained temporal weights

inferred from the separate analyses of the estimates obtained at each mean level (54, 61, 68, and 75 dB SPL), in addition to the Leq. The last column indicates

the number of subjects for which the full model explained a significantly higher proportion of the variance (R2) than the restricted model.

R2 Full vs rest

Level Model Mean SD min max (cases out of 7 where p< 0.05)

L1 (54 dB SPL) restricted 0.068 0.041 0.013 0.119

full 0.139 0.071 0.067 0.226 3

L2 (61 dB SPL) restricted 0.043 0.030 0.011 0.095

full 0.127 0.055 0.056 0.211 3

L3 (68 dB SPL) restricted 0.138 0.052 0.082 0.207

full 0.217 0.074 0.120 0.331 5

L4 (75 dB SPL) restricted 0.217 0.103 0.065 0.363

full 0.285 0.126 0.117 0.472 3
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different weighting patterns can be attributed to the different

range of segment levels presented in the two tasks, we con-

ducted a second experiment presenting exactly the same

stimuli in the AME as in the LD task.

III. EXPERIMENT 2

A. Materials and method

1. Participants

This experiment was conducted on a new group of seven

subjects (4 women, 3 men; age 20–31 years), who partici-

pated voluntarily and were naive with respect to the hypothe-

ses under test. All participants reported normal hearing.

They gave their informed written consent according to the

Declaration of Helsinki prior to the experiment and were

paid for their participation.

2. Stimuli and apparatus

All stimuli presented in this experiment were con-

structed exactly as those of the LD task of experiment 1 (see

above), both for the AME and the LD task. Thus, the seg-

ment levels of the fluctuating stimuli were always drawn

from normal distributions with means equal to 63.5 dB SPL

(“low” distribution) or 66.5 dB SPL (“high” distribution).

Stationary noises were also presented at the end of the

experiment at four different mean levels: 60.0, 62.5, 65.0,

and 67.5 dB SPL. The apparatus was the same as in experi-

ment 1.

3. Procedure

The experiment comprised six 1-h sessions scheduled

on different days. One session consisted of four 90-trial

blocks, where two blocks were assigned to the AME task

and the two remaining blocks to the LD task. The blocks

were presented such that participants alternated between the

two tasks (e.g., block1¼LD, block2¼AME, block3¼LD

and block4¼AME). The type of the first block was also

alternated between sessions. On each trial, a sound was pre-

sented with the segment levels drawn either from the “low”

or the “high” distribution (see above), randomly chosen with

a priori equal probability. The procedures were the same as

in experiment 1: in the LD blocks, the participant had to

decide whether the sound was “soft” or “loud” while in the

AME blocks, they had to give a number best representing

the global loudness of each sound. Before the experiment,

subjects were specifically informed that the variation in

loudness between the stimuli would not be very large, so

that in the AME task, they should select as many different

numbers as possible to accurately capture the small variation

in loudness from trial to trial. In order to have similar experi-

mental conditions between the two tasks, the participants did

not receive feedback on a trial-by-trial or on a block-by-

block basis. The results of the first session, which served as a

training session, were removed from the analysis. Thus, a

total of 900 trials were collected per listener and per task. At

the end of the last session, constant broadband noises were

presented to the participants in an AME task, which

consisted of 40 trials (10 repetitions of each of the four lev-

els) to measure their loudness function with stationary stim-

uli. In this final part, participants were asked to use the same

scale as they used during previous sessions.

4. Fitting loudness functions and decision models

The same fitting procedure as in experiment 1 was used

to fit loudness functions, both for constant and fluctuating

noises. The decision models were strictly identical to those

of experiment 1.

B. Results

1. Loudness functions

Overall, the data show that the subjects had no problems

to do the AME task and produced many different numbers to

evaluate the global loudness of fluctuating noises with very

similar mean levels. As an example, the magnitude estimates

given by one participant (S8) in the AME task (for both fluc-

tuating and constant noises) are plotted in Fig. 4. For every

participant, the parameters of the loudness functions fitted to

his estimates are reported in Table IV.

Loudness exponents a ranged between 0.30 and 0.80 for

both stationary and level-fluctuating noises (see Table IV). The

slope was not significantly different between stationary and

level-fluctuating noises [t(6)¼ 0.909, p¼ 0.399]. On average,

these exponents were very close to those measured in the first

experiment, with a mean value close to 0.5. As in experiment 1,

the values of the parameter k were very different between partic-

ipants (who were allowed to use their own scale). The propor-

tion of variance accounted for R2 was significantly higher for

stationary noises than for level-fluctuating noises [t(6)¼ 4.523,

p¼ 0.004].

FIG. 4. (Color online) Raw magnitude estimates produced by one subject

(S8) in the AME task of experiment 2. Same format as Fig. 1.
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2. Temporal weighting patterns

The averaged weighting patterns obtained for the two

tasks, shown in the left panel of Fig. 5, were similar to what

was observed in the first experiment, with a clear primacy

effect in the AME task while in the LD task, slightly higher

weights were assigned to both the first and the last segments

compared to the segments in the middle. An rmANOVA

with the within-subjects factors segment and task showed no

significant effect of segment [F(11, 66)¼ 2.418, p¼ 0.11,

gp
2¼ 0.287, ~e¼ 0.22]. However, the significant segment

� task interaction [F(11, 66)¼ 4.480, p¼ 0.026, gp
2¼ 0.427,

~e¼ 0.22] indicated that a different weighting was applied in

the two tasks.

On average, the temporal weighting patterns were rather

flat: as in experiment 1, small CVs were measured both in

the AME task (M¼ 0.40, SD¼ 0.17) and in the LD task

(M¼ 0.65, SD¼ 0.53). There was no significant difference

between the two tasks [t(6)¼ 1.144, p¼ 0.296]. One subject

(S9) adopted a very specific strategy in the LD task by exclu-

sively considering the three last segments of the stimuli to

judge global loudness (for S9 in the LD task, CV¼ 1.792).

This weighting pattern differed strongly from the weights

assigned by the remaining participants, as indicated by the

large confidence interval obtained for the weight on the last

segment in the LD task (see Fig. 5, left panel). After the end

of the experiment, this participant told the experimenter that

he had consciously and deliberately used this particular strat-

egy in the LD task, although he was aware that the task was

to judge the global loudness of the sounds similarly in the

two tasks. However, he had no clear explanation why he

adopted this strategy. The averaged weighting patterns when

this participant was excluded are presented in the right panel

of Fig. 5, showing weighting patterns even more similar to

the weights obtained in experiment 1. In order to check

whether the difference between the weighting patterns in the

two tasks mainly relied on listener S9, we performed a sec-

ond rmANOVA without this participant. The analysis still

provided a significant segment� task interaction [F(11, 55)

¼ 5.269, p¼ 0.001, gp
2¼ 0.43, ~e¼ 0.45]. Also, the effect of

segment was now significant [F(11, 55)¼ 3.770, p¼ 0.012,

gp
2¼ 0.513, ~e¼ 0.58].

Additional rmANOVAs conducted on each task separately

without the data of S9 confirmed the presence of non-uniform

temporal weights, with a significant effect of segment in the

AME task [F(11, 55)¼ 7.80, p< 0.001, gp
2¼ 0.61, ~e¼ 0.40],

while in the LD task the effect just failed to reach significance

[F(11, 55)¼ 2.530, p¼ 0.051, gp
2¼ 0.34, ~e¼ 0.485].

3. Predictive power of the decision models

Fair to good model predictions were found for the LD

task, except for subject S14. In the LD task, AUC ranged

from 0.69 (S14) to 0.92 (M¼ 0.85, SD¼ 0.08). In the AME

task, R2 was quite low on average (M¼ 0.40, SD¼ 0.15);

it ranged from 0.14 (S14) to 0.64. These values are compara-

ble to what we observed for experiment 1 in the separate

analyses of the AME data per mean level.

4. Increased predictive power by including temporal
weights

Full and restricted models were compared as in the first

experiment to evaluate the benefit of adding temporal

weights to a loudness model (for details about this model,

see experiment 1). The results are reported in Table V.

In the LD task, the AUC of the full model was not sig-

nificantly higher than the AUC of the restricted model,

[t(6)¼ 1.839, p¼ 0.115]. Cohen’s dz indicates a moderate

effect size (dz¼ 0.695), lower than what was measured in the

first experiment (dz¼ 0.985). However, likelihood-ratio tests

indicated a significantly better goodness-of-fit (p< 0.05)

with the full model compared to the restricted model for

all subjects but S8 and S14. In the AME task, the R2 of the

full model ranged from 0.17 to 0.66 (M¼ 0.43, SD¼ 0.15)

and was significantly higher than the R2 of the restricted

model [t(6)¼ 4.673, p¼ 0.003]. The effect size was large,

TABLE IV. Experiment 2, same format as Table I.

Experiment 2

S8 S9 S10 S11 S12 S13 S14 Average SD

Constant noises k 133.11 100.34 375.5 35.42 21.18 89.85 21.28 110.95 124.4

a 0.50 0.30 0.60 0.57 0.45 0.63 0.43 0.49 0.11

R2 0.74 0.81 0.66 0.47 0.73 0.77 0.18 0.62 0.22

Fluctuating noises k 141.76 105.45 668.15 23.48 20.72 72.54 21.67 150.54 233.00

a 0.54 0.35 0.80 0.48 0.47 0.58 0.48 0.52 0.14

R2 0.65 0.49 0.43 0.31 0.42 0.41 0.15 0.40 0.16

FIG. 5. (Color online) Mean normalized temporal weights for both tasks of

experiment 2, when all the subjects are considered (left panel) or when sub-

ject S9—who differed from the remaining participants in exclusively con-

sidering the three last segments of the stimuli in the LD task—is excluded

(right panel). Same format as Fig. 3.
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dz¼ 1.7662, similar to what was observed in the first experi-

ment. A significantly better goodness-of-fit was obtained

with the full model for all subjects but S13. Overall, this

model comparison indicates a large and significant benefit of

adding temporal weights to predict loudness in the AME

task but a smaller benefit for the LD task.

C. Discussion

On average, the shape of the temporal weighting pattern

in the AME task was strikingly similar to the pattern

observed in the first experiment, with a significant primacy

effect but no recency effect. In the LD task, there was a

small primacy effect, but also a small recency effect, even if

S9 was excluded from the analysis. The temporal weighting

patterns differed significantly between the two tasks, similar

to what was found for the first experiment. Thus, the specific

“damped” trend of the temporal weighting pattern for the

AME task (i.e., with primacy) was also observed in experi-

ment 2, where the range of levels was considerably smaller.

As for experiment 1, our results show that considering tem-

poral weights in a model can yield significant improvements

in the prediction of the loudness of level-fluctuating sounds.

IV. GENERAL DISCUSSION AND CONCLUSION

The present paper presents the results of two experiments

employing psychophysical reverse-correlation to compare the

temporal weighting of loudness between a traditional absolute

magnitude estimation task (AME) and a level-discrimination

task (LD).

In the LD task, we observed “u-shaped” weighting pat-

terns in both experiments, with higher weights assigned to

the first and final temporal segments of the sounds than to

the temporal segments situated in the middle. In experiment

1, the effect of segment was not significant, however, and in

experiment 2 it just failed to reach significance (p¼ 0.051

when one subject was excluded who had deliberately used a

different strategy in the LD task than in the AME task). It

should be noted that we tested only seven subjects. Thus, the

statistical power to detect effects was comparably small, and

at least for experiment 2 one could thus expect to find a sig-

nificant effect of the segment factor if a larger group of lis-

teners had been tested. Previous studies for level-

discrimination tasks usually reported much stronger primacy

effects (sometimes, weaker recency effects as well) (e.g.,

Pedersen and Ellermeier, 2008; Oberfeld and Plank, 2011;

Oberfeld, 2015). In part, these differences are likely due to

stimulus dissimilarities. Probably most important, in the

present study, the stimuli were considerably longer (3 s) than

in previous experiments on temporal weights, which mostly

presented sounds of 1 s or less in duration. Thus, our data

show that listeners judging the global loudness of longer

sounds also show a trend towards assigning non-uniform

temporal weights. Second, the temporal weights inferred

from sample discrimination tasks could in fact reflect effects

related to memory processes (Dittrich and Oberfeld, 2009;

Oberfeld and Plank, 2011). There is some evidence for

weaker serial position effects in memory at slow presenta-

tion rates (Wickelgren, 1970; Dosher, 1999). Such an effect

might have contributed to the weaker primacy effects

observed in the present study, because the stimuli were vary-

ing in level at a slower rate (4 Hz) than in previous studies

(�10 Hz). Another stimulus difference that we should men-

tion here is the variance of the random distributions from

which the segment levels were drawn, which was substan-

tially larger than in previous studies (SD¼ 5 dB vs 2 dB). It

is not unlikely that the higher “modulation depth” resulted in

a percept that was qualitatively different from the “flat-

profile” stimuli with comparably small level variations pre-

sented in earlier studies. It is not obvious, however, why a

different percept should result in different temporal weights.

Furthermore, in the AME tasks of both experiments, we

found evidence for significant primacy effects, i.e., the first

few temporal segments of the sounds received greater weights

compared to the following segments. However, there were no

recency effects. The second experiment allowed us to rule out

that the much larger level range presented in the first experi-

ment in the AME task, compared to the LD task, was at the

origins of the temporal weighting dissimilarities between the

two tasks. Taken together, the data of both experiments show

that the temporal weighting patterns obtained in the AME

task were statistically different from those obtained in the LD

task, which clearly contradicts the initial hypothesis proposed

in the Introduction.

In this study, we derived the temporal weights in the

two tasks using segment loudness as predictors, while the

analyses in previous studies were based on the sound pres-

sure levels of the segments (e.g., Ponsot et al., 2013). One

may thus ask whether similar weighting patterns are found

with segment levels as predictors or if the compressive rela-

tion between level and loudness affects the estimated

weights. To answer this question, the data were re-analyzed

TABLE V. Experiment 2, same format as Table II.

Experiment 2

Goodness-of-fit index (Task) Model S8 S9 S10 S11 S12 S13 S14 Average SD

AUC (LD) restricted 0.935 0.749 0.897 0.876 0.854 0.870 0.687 0.838 0.089

full 0.939 0.885 0.911 0.891 0.862 0.911 0.697 0.871 0.081

p-value 0.279 <0.001 0.001 0.001 0.023 <0.001 0.627

R2 (AME) restricted 0.645 0.486 0.423 0.308 0.415 0.404 0.141 0.403 0.155

full 0.655 0.503 0.474 0.333 0.440 0.417 0.172 0.428 0.150

p-value 0.018 0.005 0.001 0.001 0.001 0.077 0.002
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using segment levels as predictors and we found that the

temporal weights were virtually unaffected by this modifica-

tion. Therefore, the present results are not due to the novel

form of analysis introduced in this study; similar conclusions

would have been reached if segment levels had been used as

predictors in the decision models instead.

Thus, the present study suggests a difference in the tem-

poral weighting processes that depends on whether listeners

are asked to do a binary loudness classification (LD task) or

to evaluate the global loudness of time-varying sounds by

assigning a number (AME task). Although the causes of the

dissimilar weighting strategies presently observed are not

obvious, one direction could be proposed to explain these

results. This explanation relies on potential attentional differ-

ences and differences in the allocation of processing resour-

ces in the two tasks. Indeed, the AME task requires a more

complex evaluation process as compared to the LD task:

selecting a number from a potentially infinite set of numbers,

or selecting one of only two possible responses. Thus, sub-

jects probably need to invest higher effort in the AME task,

which might lead to a more “economic” type of listening as

compared to the other task. In addition, the fact that subjects

repeated the tasks over hundreds of trials might have empha-

sized the need to adopt a strategy minimizing both the cost

of the evaluation process and their response time in order to

handle the task more easily. One way to achieve this in the

AME task would be to start the process of selecting a num-

ber corresponding to the loudness of the sound soon after the

sound has started rather than to wait until the end of the

sound. The assignment of attention to the temporal dynamics

of the sound would then be different between the two tasks,

resulting in different temporal weighting patterns. Also, if

our assumption is correct that listeners adopt “economic”

strategies in the AME task, then the difference between the

weights observed in an AME and in an LD task should be

reduced at shorter sound durations, as for example, the 1 s

durations used in many previous studies. However, we have

no direct experimental evidence to support these arguments

yet. An interesting perspective would be to further investi-

gate this aspect and, more generally, to evaluate the extent to

which the temporal weighting strategies are conditioned by

attention. For instance, it could be hypothesized that visual

distractors or background stimuli presented at the beginning

or the end of the stimuli to be evaluated would change the

magnitude of primacy and recency effects.

In regards to loudness coding and evaluation more gen-

erally, the present results confirm the view that time-varying

stimuli are not weighted uniformly. We found evidence for

primacy effects underlying the judgments (i.e., the first por-

tions playing a greater role) when global loudness was meas-

ured either in an AME or in an LD task. Our data indicate

that for sounds clearly longer than 1 s, a recency effect

emerges in a LD task but not in an AME task. It would be

interesting to explore which temporal weights are assigned

in even longer sounds. One could speculate that with for

example, a 10-s sound, the primacy effect would be further

reduced while the recency effect would increase (e.g., Susini

et al., 2002). Although such a result should indeed be

observed in an LD task, which is assumed to directly reflect

temporal weighting processes, we would also speculate that

the temporal weighting patterns inferred from an AME task

will still show primacy effects for longer sounds, compatible

with our idea that subjects always focus on the beginning of

the sounds in this task. Additional research is needed to iden-

tify the respective contributions of spontaneous temporal

weighting and task-specific processes.

The amount of interindividual variation in the temporal

weights observed in our experiments was somewhat higher

than in most previous studies measuring temporal weights

for shorter sounds with durations up to 1 s, where typically

very consistent primacy effects were found. The benefit of

using individual temporal weights to predict loudness judg-

ments was found to differ between tasks and listeners, but in

the majority of cases it yielded significant improvements,

which emphasizes the importance of considering non-

uniform temporal weighting processes that underpin global

loudness evaluation.

The main finding of the present study was the dissimilar-

ity in temporal loudness weighting strategies found between

global loudness judged in a sample discrimination task and in

a magnitude estimation task. This effect was found even when

the range of level variation did not differ between the two

tasks. As discussed above, we however argue that this result

does not invalidate temporal weighting processes typically

inferred from sample discrimination tasks, but rather suggests

that magnitude estimations repeated over hundreds of trials

might lead people to adopt specific listening strategies in order

to handle the required task in an economic fashion. Further

work on this issue could help to gain better insight into the

mechanisms underlying global loudness evaluation. To under-

stand why and how listeners deploy specific temporal weight-

ing strategies depending on the psychophysical task is

certainly a promising direction for future research on loud-

ness. In particular, it would be interesting to examine the pro-

posed hypothesis that the dissimilar temporal weighting

between different psychophysical tasks can be attributed to

the amount of attention/processing resources distributed

between the process of listening and forming a “sensory” rep-

resentation of its global loudness, and the process of selecting

a response (e.g., selecting a number in the AME task). Further

studies are required before a precise implementation of a typi-

cal “universal” non-uniform temporal weighting function in

future loudness models. In particular, it remains to be deter-

mined which weighting strategy closely reflects actual deci-

sional processes used by listeners in more realistic (non-

laboratory) loudness evaluation situations. The precise shape

of the weighting function, its dependence on stimulus parame-

ters (e.g., number of segments, variance of each segment) and

its robustness to different stimulus configurations and psycho-

physical tasks still have to be addressed in more detail.
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