
Chapter 1

The RSA Cipher and its
Algorithmic Foundations

The most important—that is, most applied and most analyzed—asymmetric
cipher is RSA, named after its inventors Ron Rivest, Adi Shamir, and Len
Adleman. It uses elementary number theoretic algorithms, and its supposed
security relies on the hardness of factoring large numbers into primes, al-
though breaking RSA might be easier then factoring, see Section 2.2.

The three fundamental arithmetic algorithms for implementing RSA are

• binary power algorithm,

• Euclidean algorithm,

• chinese remainder algorithm,

the last two of them known from Part I of these lectures (in the context of lin-
ear ciphers). These algorithms are basic not only for cryptography but more
generally for algorithmic algebra and number theory (“computer algebra”).
Moreover they are fundamental also for numerical mathematics—for prob-
lems that don’t require approximate numerical solutions in floating-point
numbers but exact solutions in integers, rationals, or symbolic expressions.

2

1.1 Description of the RSA Cipher

Parameters

The three parameters

• n = module,

• e = public exponent,

• d = private exponent,

are positive integers with

(1) med
⌘ m (mod n) for all m 2 [0 . . . n� 1].

Naive Description

The first idea is to set

M = C = Z/nZ, K ✓ [1 . . . n� 1]⇥ [1 . . . n� 1].

For k = (e, d) we have

Ek : M �! C, m 7! c = me mod n,

Dk : C �! M, c 7! m = cd mod n.

This description is naive for n is variable, and (necessarily, as we’ll see soon)
a part of the public key. In particular the sets M and C vary.

More Exact Description

We want to describe RSA in a form that fits the general definition of a cipher.
To this end we note that for an l bit number n we have 2l�1

 n < 2l, thus
fix the parameters:

• l = bit length of the module (= “key length”),

• l1 < l bit length of plaintext blocks,

• l2 � l bit length of ciphertext blocks.

We construct a block cipher M �! C over the alphabet ⌃ = F2 with

M = Fl1
2 ✓ Fl2

2 = C.

The key k = (n, e, d) 2 N3 is chosen with (2l�1
 n < 2l or equivalently:)

`(n) := blog2 nc+ 1 = l, 1 e n� 1, 1 d n� 1,

3

such that equation (1) holds. The symbol `(n) denotes the number of bits,
that is, the length of the binary representation of n.

To encrypt a plaintext block m of length l1 by Ek we interpret it as
the binary representation of an integer. The result c, a non-negative integer
< n, has a binary representation by l2 bits—completed with leading zeroes
if necessary, or better yet, with random leading bits.

To decipher the ciphertext block c we interpret it as a non-negative
integer c < n and transform it into m = cd mod n.

Really Exact Description

See PKCS = ‘Public Key Cryptography Standard’ #1:
https://tools.ietf.org/html/rfc8017.

Questions to Address

• How to find suitable parameters n, d, e such that (1) holds?

• How to e�ciently implement the procedures for encryption and de-
cryption?

• How to assess the security?

Speed

Note that encryption and decryption are significantly slower than for com-
mon symmetric ciphers. (Estimates range up to a factor of roughly 104.)

4

1.2 The Binary Power Algorithm

The procedure for raising powers in a quite e�cient way has a natural de-
scription in the abstract framework of a multiplicative semigroup H. The
task is: Compute the power xn for x 2 H and a positive integer n—the prod-
uct of n factors x—by as few multiplications as possible. The naive direct
method,

xn = x · (x · · ·x) ,

involves n � 1 multiplications. The expense is proportional with n, hence
grows exponentially with the number `(n) of bits (or decimal places) of n.
A much better idea is the binary power algorithm. In the case of an
additively written operation (strictly speaking for the semigroup H = N) it
is known also as Russian peasant multiplication, and was known in ancient
Egypt as early as 1800 B.C., in ancient India earlier than 200 B.C.

The specification starts from the binary representation of the exponent
n,

n = bk2
k + · · ·+ b02

0 with bi 2 {0, 1}, bk = 1,

thus k = blog2 nc = `(n)� 1. Then

xn = (x2
k
)bk · · · (x2)b1 · xb0 .

This suggests the following procedure: Compute x, x2, x4, . . . , x2
k
in order by

squaring k times (and keeping the intermediate results), and then multiply
the x2

i
that have bi = 1. The number of factors is ⌫(n), the number of 1’s

in the binary representation. In particular ⌫(n) `(n). This makes a total
of `(n) + ⌫(n)� 2 multiplications.

We have shown:

Proposition 1 Let H be a semigroup. Then for all x 2 H and n 2 N we

can compute xn by at most 2 · blog2 nc multiplications.

This expense is only linear in the bit length of n. Of course to assess the
complete expense we have to account for the cost of multiplication in the
semigroup H.

Here is a description as pseudocode:

5

Procedure BinPot
Input parameters:

x = base
[locally used for storage of the iteratively computed squares]

n = exponent
Output parameters:

y = result xn

[locally used for accumulation of the partial product]
Instructions:

y := 1.
while n > 0:

if n is odd: y := yx.
x := x2.
n := bn/2c.

Remarks

1. The algorithm is almost optimal, but not completey. The theory of
“addition chains” in number theory yields an asymptotic behaviour
of log2 n for the average minimum number of multiplications, roughly
half the value from Proposition 1.

2. That the numbers of involved multiplications di↵er depending on the
exponent is the starting point of timing and power attacks invented
by Paul Kocher. Imagine a device, say a smart card, that computes
powers with a secret exponent. Then the di↵erent timings or power
consumptions reveal information about the exponent.

6

1.3 The Carmichael Function

We assume n � 2.
The Carmichael function is defined as the exponent of the multiplica-

tive group Mn = (Z/nZ)⇥:

�(n) := exp(Mn) = min{s � 1 | as ⌘ 1 (mod n) for all a 2 Mn};

in other words, �(n) is the maximum of the orders of the elements of Mn.

Remarks

1. Euler’s theorem may be expressed as �(n)|'(n) (“exponent divides
order”). A common way of expressing it is

a'(n) ⌘ 1 (mod n) for all a 2 Z with gcd(a, n) = 1.

Both versions follow immediately from the definition.

2. If p is prime, then Mp is cyclic—see Proposition 2 below—, hence

�(p) = '(p) = p� 1.

By the chinese remainder theorem we have Mmn
⇠= Mm ⇥Mn, hence by

Lemma 22 of Appendix A.10:

Corollary 1 For coprime m,n 2 N2

�(mn) = lcm(�(m),�(n)).

Corollary 2 If n = pe11 · · · perr is the prime decomposition of n 2 N2, then

�(n) = lcm(�(pe11), . . . ,�(perr)).

Remarks

3. The Carmichael function for powers of 2 (proof as exercise or in
Appendix A.1):

�(2) = 1, �(4) = 2, �(2e) = 2e�2 for e � 3.

4. The Carmichael function for powers of odd primes (proof as exer-
cise or in Appendix A.3):

�(pe) = '(pe) = pe�1
· (p� 1) for p prime � 3.

To prove the statement in Remark 2 we have to show that the multi-
plicative group mod p is indeed cyclic. We prove a somewhat more general
standard result from algebra:

7

Proposition 2 Let K be a field and G K⇥
be a finite subgroup of order

#G = n. Then G is cyclic and consists exactly of the n-th roots of unity in

K.

Proof. For a 2 G we have an = 1, hence G is contained in the set of zeroes
of the polynomial Tn

� 1 2 K[T]. Thus K has exactly n di↵erent n-th roots
of unity, and G contains all of them.

Now let m be the exponent of G, in particular m n. Lemma 24 of
Appendix A.10 yields that all a 2 G are even m-th roots of unity. Hence
n m, so n = m, and G has an element of order n. 3

8

1.4 Suitable Parameters for RSA

Proposition 3 Let n � 3 be an integer. The following statements are equiv-

alent:

(i) n is squarefree.

(ii) There exists an r � 2 with ar ⌘ a (mod n) for all a 2 Z.

(iii) [RSA equation] For every d 2 N and e 2 N with de ⌘ 1 (mod �(n))
we have ade ⌘ a (mod n) for all a 2 Z.

(iv) For each k 2 N we have ak·�(n)+1
⌘ a (mod n) for all a 2 Z.

Proof. “(iv) =) (iii)”: Since de ⌘ 1 (mod �(n)), we have de = k · �(n) + 1
for some k. Hence ade ⌘ a (mod n) for all a 2 Z.

“(iii) =) (ii)”: Since n � 3, we have �(n) � 2. Choosing an arbi-
trary d with gcd(d,�(n)) = 1 and a corresponding e by congruence division
mod�(n) we get (ii) with r = de.

“(ii) =) (i)”: Assume there is a prime p with p2|n. Then by (ii) we
have pr ⌘ p (mod p2). But because of r � 2 we have pr ⌘ 0 (mod p2),
contradiction.

“(i) =) (iv)”: By the chinese remainder theorem we only have to show
that ak·�(n)+1

⌘ a (mod p) for all prime divisors p|n.
Case 1 : p|a. Then a ⌘ 0 ⌘ ak·�(n)+1 (mod p).
Case 2 : p - a. Because of p � 1|�(n), we have a�(n) ⌘ 1 (mod p), hence

ak·�(n)+1
⌘ a · (a�(n))k ⌘ a (mod p). 3

Corollary 1 The RSA procedures work for a module n if and only if n is

squarefree.

To find suitable exponents d and e we have to know �(n) or, better yet
(and necessarily as it will turn out) the prime decomposition of n. Then the
procedure of key generation suggests itself:

1. Choose di↵erent primes p1, . . . , pr and form the module n := p1 · · · pr.

2. Compute �(n) = lcm(p1�1, . . . , pr�1) using the Euclidean algorithm.

3. Choose the public exponent e 2 N2, coprime with �(n).

4. Compute the private exponent d with de ⌘ 1 (mod �(n)) by congru-
ence division.

Then take the pair (n, e) as public key, and the exponent d as private key.

Corollary 2 Who knows the prime decomposition of n can compute the

private key d from the public key (n, e).

9

Practical Considerations

1. The usual choice is r = 2. Then the module has only two prime factors
p and q that, as a compensation, are very large. Factoring this kind
of integers n = pq seems especially hard. It is crucial that the primes
are chosen completely at random. Then an attacker has no hint for a
guess.

2. For e we may choose a prime with e - �(n), or a “small” integer say
e = 3—more on the dangers of this choice later. A common standard
choice is the prime e = 216 + 1, provided e - �(n). The binary rep-
resentation of this integer contains only two 1’s, making the binary
power algorithm for enryption very fast. (For digital signature this
is the verification of the signature.) However this choice of e doesn’t
make decryption (or generating a digital signature) more e�cient.

3. After generating the keys we don’t need p, q, and �(n) anymore, so we
could destroy them.

However: Since d is a “random” integer in the interval [1 . . . n] taking
d-th powers is costly even with the binary power algorithm. It becomes
somewhat faster when the owner of the private key computes cd mod p
and mod q—using integers of about half the size—and then composes
the result mod n with the chinese remainder theorem. This procedure
yields a small advantage in speed for decryption (or generating a digital
signature).

4. Instead of �(n) we could use its multiple '(n) = (p � 1)(q � 1) for
calculating the exponent.

Advantage: We save (one) lcm computation.

Drawback: In general we get a larger exponent d, slowing down each
single decryption.

5. Notwithstanding Corollary 1 the RSA procedure works in a certain
sense even if the module n is not squarefree. Decryption using the chi-
nese remainder theorem is slightly more complex, involving an addi-
tional “Hensel lift.” However decryption breaks down for plaintexts
a that are multiples of a prime p with p2|n. Note that this e↵ect is
compatible with Corollary 1!

The danger of hitting a plaintext divided by a multiple prime factor
of n by chance is negligeable but grows with the number of prime
factors. Even for a squarefree module n a plaintext divided by a prime
factor would immediately yield a factorization of n, and hence reveal
the private key.

10

Attention

The cryptanalytic approaches of the following chapter result in a set of side
conditions that should be strictly respected when generating RSA keys.

Exercises

1. Let p and q be two di↵erent odd primes, and n = p2q. Characterize the
plaintexts a 2 Z/nZ that satisfy the RSA equation ade ⌘ a (mod n).
Generalize the result to arbitrary n.

2. Show that an integer d 2 N is coprime with �(n) if and only if d is
coprime with '(n).

11

