1.1 Description of the RSA Cipher

Parameters

The three parameters

- $n=$ module,
- $e=$ public exponent,
- $d=$ private exponent,
are positive integers with

$$
\begin{equation*}
m^{e d} \equiv m \quad(\bmod n) \quad \text { for all } m \in[0 \ldots n-1] . \tag{1}
\end{equation*}
$$

Naive Description

The first idea is to set

$$
M=C=\mathbb{Z} / n \mathbb{Z}, \quad K \subseteq[1 \ldots n-1] \times[1 \ldots n-1] .
$$

For $k=(e, d)$ we have

$$
\begin{array}{ll}
E_{k}: M \longrightarrow C, & m \mapsto c=m^{e} \bmod n, \\
D_{k}: C \longrightarrow M, & c \mapsto m=c^{d} \bmod n .
\end{array}
$$

This description is naive for n is variable, and (necessarily, as we'll see soon) a part of the public key. In particular the sets M and C vary.

More Exact Description

We want to describe RSA in a form that fits the general definition of a cipher. To this end we note that for an l bit number n we have $2^{l-1} \leq n<2^{l}$, thus fix the parameters:

- $l=$ bit length of the module (= "key length"),
- $l_{1}<l$ bit length of plaintext blocks,
- $l_{2} \geq l$ bit length of ciphertext blocks.

We construct a block cipher $M \longrightarrow C$ over the alphabet $\Sigma=\mathbb{F}_{2}$ with

$$
M=\mathbb{F}_{2}^{l_{1}} \subseteq \mathbb{F}_{2}^{l_{2}}=C .
$$

The key $k=(n, e, d) \in \mathbb{N}^{3}$ is chosen with ($2^{l-1} \leq n<2^{l}$ or equivalently:)

$$
\ell(n):=\left\lfloor\log _{2} n\right\rfloor+1=l, \quad 1 \leq e \leq n-1, \quad 1 \leq d \leq n-1,
$$

such that equation (1) holds. The symbol $\ell(n)$ denotes the number of bits, that is, the length of the binary representation of n.

To encrypt a plaintext block m of length l_{1} by E_{k} we interpret it as the binary representation of an integer. The result c, a non-negative integer $<n$, has a binary representation by l_{2} bits-completed with leading zeroes if necessary, or better yet, with random leading bits.

To decipher the ciphertext block c we interpret it as a non-negative integer $c<n$ and transform it into $m=c^{d} \bmod n$.

Really Exact Description

See PKCS $=$ 'Public Key Cryptography Standard' \#1:
https://tools.ietf.org/html/rfc8017.

Questions to Address

- How to find suitable parameters n, d, e such that (1) holds?
- How to efficiently implement the procedures for encryption and decryption?
- How to assess the security?

Speed

Note that encryption and decryption are significantly slower than for common symmetric ciphers. (Estimates range up to a factor of roughly 10^{4}.)

