2.4 Factoring Algorithms

A crucial question for the security of RSA is: How fast can we factorize large integers?

- There are "fast" factoring algorithms for integers of the form $a^{b} \pm c$ with "small" values a and c, the most prominent examples are the Mersenne and Fermat primes $2^{b} \pm 1$. The probability that the generation of RSA keys from random primes yields such a module is extremely low and usually neglected.
- Fermat factoring of n : Find an integer $a \geq \sqrt{n}$ such that $a^{2}-n$ is a square $=b^{2}$. This yields a decomposition

$$
n=a^{2}-b^{2}=(a+b)(a-b) .
$$

Example: $n=97343, \sqrt{n} \approx 311.998,312^{2}-n=1, n=313 \cdot 311$. This method is efficient provided that we find an a close to \sqrt{n}, or $a^{2} \approx n$. In the case $n=p q$ of two factors this means a small difference $|p-q|$. (Un-) fortunately finding a seems to be hard.

- The fastest general purpose factoring algorithms
- number field sieve (Silverman 1987, Pomerance 1988, A. K. Lenstra/ H. W. Lenstra/ Manasse/ Pollard 1990),
- elliptic curve factoring (H. W. Lenstra 1987, Atkin/ Morain 1993),
need time of size

$$
L_{n}:=e^{\sqrt[3]{\ln n \cdot(\ln \ln n)^{2}}},
$$

hence are "subexponential", but also "superpolynomial". Anyway they show that factoring is a significantly more efficient attack on RSA than exhaustion ("brute force").

This results in the following estimates for factoring times:

integer	bits	decimal places	expense (MIPS years)	status
rsa120	399	120	100	<1 weak on a PC
rsa154	512	154	100000	TE RIELE 1999
rsa200	665	200	$(*)$	FRANKE 2005
	1024	308	10^{11}	insecure
	2048	616	10^{15}	for short-term security

(*) 80 CPUs à 2.2 GHz in 4.5 months

When we extrapolate these estimates we should note:

- they are rough approximations only,
- they hold only as long as nobody finds significantly faster factoring algorithms.

Remember that the existence of a polynomial factoring algorithm is an open problem.

Some recent developments are already incorporated into the table:

- A paper by A. K. Lenstra/ E. Verheul, Selecting cryptographic key sizes summarizes the state of the art in the year 2000 and extrapolates it.
- A proposal by Bernstein, Circuits for integer factorization triples (!) the length of integers that can be factorized with a given expense, using the fastest factoring algorithms.
- Special-purpose hardware designs by Shamir and his collaborators:
- TWINKLE (The Weizmann Institute Key Locating Machine) (1999) is the realization in hardware of an idea by Lehmer from the 1930s that accelerates factoring 100-1000 times,
- TWIRL (The Weizmann Institute Relation Locator) (2003) accelerates factoring another 1000-10000 times following BERNsTEIN's idea.

Taken together these approaches make factoring 10^{6} (or 2^{20}) times faster using the number field sieve. However the order of magnitude L_{n} of the complexity is unaffected.

This progress lets the Lenstra/ Verheul estimates look overly optimistic. 1024-bit keys should no longer be used. 2048-bit keys might be secure enough to protect information for a few years.

Recommendation: Construct your RSA module $n=p q$ from primes p and q that have bit lengths of at least 2048 bits, and choose them such that also their difference $|p-q|$ has a bit length of about 2048 bits.

