
Chapter 2

Cryptanalysis of RSA

“Cryptanalysis of RSA” doesn’t break the cipher—except in a few exceptional
situations—but traces out the framework for applying it in a secure way
according to our best judgment. In particular it helps avoiding some traps.
We want answers to the questions:

• Do there exist su�ciently many keys to evade an exhaustion attack?

• Which mathematical results might lead to breaking an RSA cipher-
text? Or to a computation of the private key?

• How to choose the parameters in order to avoid weaknesses?

There is a good overview in:

D. Boneh: Twenty years of attacks on the RSA cryptosystem.

Notices of the American Mathematical Society 46 (1999), 203–
213.

12

2.1 The Prime Number Theorem

Let ⇡(x) be the number of primes p x. Somewhat more generally let
⇡a,b(x) be the number of primes p x of the form p = ak + b (in other
words: congruent to b modulo a). The prime number theorem states the
asymptotic relation ()

⇡a,b(x) ⇠
1

'(a)
·

x

ln(x)

provided a and b are coprime. The special case a = 1, b = 0, is:

⇡(x) ⇠
x

ln(x)
.

There are many theoretical and empirical results concerning the quality of
this approximation. An instance is a formula by Rosser and Schoenfeld:

x

ln(x)
·

✓
1 +

1

2 ln(x)

◆
< ⇡(x) <

x

ln(x)
·

✓
1 +

3

2 ln(x)

◆
for x � 59.

The prime number theorem helps for answering the following questions (al-
beit not completely exactly):

How many prime numbers < 2k do exist?

Answer: ⇡(2k), that is about

2k

k · ln(2)
,

at least (for k � 6)
2k

k · ln(2)
·

✓
1 +

1

2k ln(2)

◆
.

For k = 128 this number is about 3.8 · 1036, for k = 256, about 6.5 · 1074.

How many k-bit primes do exist?

Answer: ⇡(2k)� ⇡(2k�1), that is about

2k

k · ln(2)
�

2k�1

(k � 1) · ln(2)
=

2k�1

ln(2)
·

k � 2

k(k � 1)
⇡

1

2
· ⇡(2k) .

For k = 128 this amounts to about 1.9 ·1036, for k = 256, to about 3.2 ·1074.
In other words, a randomly chosen k-bit integer is prime with probability

⇡(2k)� ⇡(2k�1)

2k�1
⇡

⇡(2k)

2k
⇡

1

k · ln(2)
⇡

1.44

k
.

13

For k = 256 this is about 0.0056.
The inequality

⇡(2k)� ⇡(2k�1) > 0.71867 ·
2k

k
for k � 21.

gives a reliable lower bound.
In any case the number of primes of size relevant for RSA is huge and

makes an exhaustion attack completely obsolete.

Special Primes

Often cryptologists want their primes to have special properties:

Definition A special prime (or safe prime) is a prime of the form p =
2p0 + 1 where p0 is an odd prime (then p0 is also called a Germain
prime).

Remark Let p be special. Then p ⌘ 3 (mod 4), for p = 2p0 + 1 ⌘ 2 · a+ 1
where a = 1 or 3.

Definition A superspecial prime is a prime of the form p = 2p0+1 where
p0 = 2p00 + 1 is a special prime.

Examples The two smallest superspecial primes are p = 23 (with p0 = 11,
p00 = 5) and q = 47 (with q0 = 23, q00 = 11).

Are there enough primes to fulfill these special or superspe-

cial requests?

Frankly speaking, there is no exact answer. However we can give (unproven!)
fairly exact estimates for these numbers:

• As we saw, a (positive) k-bit integer is prime with probability ↵
k where

↵ ⇡ 1.44.

• If p = 2p0 + 1 is special, then p0 is a k/2-bit integer, and is prime
(heuristically, but in fact unknown) with probability 2↵

k .

• Thus we estimate that a random k-bit integer is a special prime with
probability ↵

k ·
2↵
k = 2↵2

k2 , and we expect that ↵2

k2 · 2k of the 2k�1 k-bit
integers are special primes (assuming that the “events” p prime and
(p� 1)/2 prime are independent).

• Moreover p00 = (p0 � 1)/2 is a k/4-bit integer, hence prime with prob-
ability 4↵

k .

14

• This makes up for a probability of

↵

k
·
2↵

k
·
4↵

k
=

8↵3

k3

for a k-bit integer to be a superspecial prime.

• By this consideration—although we have no mathematical proof for
it—we expect that

↵3

k3
· 2k+2

of the 2k�1 k-bit integers are superspecial primes.

• For k = 256 = 28 (and ↵2
⇡ 2, ↵3

⇡ 3) we may hope for

2 · 2256 · 2�16
⇡ 3.5 · 1072 special primes,

3 · 2258 · 2�24
⇡ 8.3 · 1070 superspecial primes.

Extensions

Let pn be the n-th prime, thus p1 = 2, p2 = 3, p3 = 5, Let #(x) be the
sum of the logarithms of the primes x,

#(x) =
X

px, p prime

ln(p).

Then we have the asymyptotic formulas

pn ⇠ n · ln(n),

#(x) ⇠ x,

and the error bounds due to Rosser/Schoenfeld:
(1)

n ·

✓
ln(n) + ln ln(n)�

3

2

◆
< pn < n ·

✓
ln(n) + ln ln(n)�

1

2

◆
for n � 20,

(2) x ·

✓
1�

1

ln(x)

◆
< #(x) < x ·

✓
1�

1

2 ln(x)

◆
for n � 41.

For a proof of the prime number theorem see any textbook on analytic
number theory, for example

Apostol, T. M. Introduction to Analytic Number Theory.

Springer-Verlag, New York 1976.

15

2.2 Computing the Key and Factorization

Question: How to compute the private RSA exponent d, given the public

exponent e and the module n?

Answer: Each of the following tasks (A) – (D) is e�ciently reducible to
each of the other ones:

(A) Computing the private key d.

(B) Computing �(n) (Carmichael function).

(C) Computing '(n) (Euler function).

(D) Factoring n.

Breaking RSA is the (possibly properly) easier task:

(E) Computing e-th roots in Z/nZ.

The “proof” (not an exact proof in the mathematical sense) follows the
roadmap:

C -A

B

E

D

66
-

-
�
�

We always assume that n and the public exponent e are known, and
n = p1 · · · pr with di↵erent primes p1, . . . , pr.

Clearly “A �! E”: Taking an e-th root means raising to the d-th power.
So if d is known, computing e-th roots is easy.

Note that the converse implication is unknown: Breaking RSA could be

easier than factoring.

“D �! C”: '(n) = (p1 � 1) · · · (pr � 1).

“D �! B”: �(n) = kgV(p1 � 1, . . . , pr � 1).

“B �! A”: Compute d by congruence division from de ⌘ 1 (mod �(n)).

“C �! A”: Since '(n) has exactly the same prime factors as �(n), also
'(n) is coprime with e. From de ⌘ 1 (mod '(n)) we get a solution for d by
congruence division. This might not be the “true” exponent, but works in
the same way as private key since a forteriori de ⌘ 1 (mod �(n)).

“A �! D” is significantly more involved. Moreover we only construct a
probabilistic algorithm.

16

Preliminary Remarks

1. It su�ces to decompose n into two proper factors.

(a) Let n = n1n2 be a proper decomposition, and assume for sim-
plicity that n1 = p1 · · · ps with 1 < s < r. Then

�(n1) = kgV(p1 � 1, . . . , ps � 1)| kgV(p1 � 1, . . . , pr � 1) = �(n),

thus also de ⌘ 1 (mod �(n1)). This reduces the problem to the
analoguous ones for n1 and n2.

(b) Since the number of prime factors of n is at most log2(n) the
recursive reduction suggested by (a) is e�cient.

2. How can a residue class w 2 Z/nZ help with factoring n?

(a) Finding a w 2 [1 . . . n�1] with gcd(w, n) > 1 decomposes n since
gcd(w, n) is a proper divisor of n.

(b) Finding a w 2 [2 . . . n � 2] with w2
⌘ 1 (mod n) (that is a non-

trivial square root of 1 in Z/nZ) likewise decomposes n:

Since n|w2
� 1 = (w + 1)(w � 1) and n - w ± 1 we have

gcd(n,w + 1) > 1, and this decomposes n by (a).

Now let (d, e) be a pair of RSA exponents. Then also u := ed�1 = k·�(n)
is known (with unknown k and �(n)). Since �(n) is even we may write

u = r · 2s with s � 1 and r odd.

If we choose a random w 2 [1 . . . n � 1], then we have to deal with two
possibilities:

• gcd(w, n) > 1—then n is decomposed.

• gcd(w, n) = 1—then wr2s
⌘ 1 (mod n).

In the second case we e�ciently find the minimal t � 0 with

wr2t
⌘ 1 (mod n).

Again we distinguish two cases:

• t = 0—bad luck, choose another w.

• t > 0—then wr2t�1
is a square root 6= 1 of 1 in Z/nZ.

In the second case we distiguish:

• wr2t�1
⌘ �1 (mod n)—bad luck, choose another w.

17

• wr2t�1
/⌘ �1 (mod n)—then n is decomposed by preliminary remark 2.

Thus every choice of w 2 [1 . . . n� 1] has one of four possible outcomes,
two of them decompose n, and the other two flop. Denote the last two events
by

(En,u(w)/I) wr
⌘ 1 (mod n)

(En,u(w)/II) wr2t�1
⌘ �1 (mod n) for a t with 1 t s.

Altogether this yields a tree-like structure:

w 2 [1 . . . n� 1] �!
gcd(w, n) > 1 �! n decomposed SUCCESS
w 2 Mn �!

wr
⌘ 1 (mod n) �! (En,u(w)/I) FLOP

wr/⌘ 1 (mod n) �!

wr2t�1
⌘ �1 (mod n) �! (En,u(w)/II) FLOP

wr2t�1
/⌘ �1 (mod n) �! n decomposed SUCCESS

Thus our procedure decomposes n “with high probability” if there are
only “few” “bad” integers w with (En,u(w)/I,II). The next section will pro-
vide an upper bound for their number.

18

2.3 The Probability of Flops

Let n 2 N3. Furthermore assume that u 2 N2 is even, u = r · 2s with odd r
and s � 1. We introduce the sets:

A(0)
u = B(0)

u := {w 2 Mn | wr = 1} [case (En,u/I)],

A(t)
u := {w 2 Mn | wr·2t = 1, wr·2t�1

6= 1} for 1 t s,

B(t)
u := {w 2 A(t)

u | wr·2t�1
= �1} [case (En,u/II)],

Au :=
s[

t=0

A(t)
u = {w 2 Mn | wu = 1},

Bu :=
s[

t=0

B(t)
u [case (En,u) (I or II)].

C0 := {w 2 Mn | ordw odd},

C1 := {w 2 Mn | � 1 2 hwi},

C := C0 [C1.

Remarks

• A0
u Au Mn are subgroups, as are A0

u C0 Mn.

• B(t)
u = A(t)

u \ C for t = 0, . . . , s, since a cyclic group hwi can contain
at most one square root of 1 in addition to 1 itself.

• Hence also Bu = Au \ C.

• Bu is the exceptional set of “bad” integers with (En,u) from Section 2.2
that flop with factoring n. The following proposition upper bounds by
1
2 the probability of hitting an element of this set by pure chance. If
we try k random candidate integers the probability of not factoring n
is < 1/2k, hence extremely small even for moderate sizes of k

Proposition 4 Let n be odd and not a prime power. Let u = r · 2s be a

multiple of �(n) with odd r. Then

#Bu
1

2
· '(n).

Proof. By the following lemma C, and a forteriori Bu, is contained in a
proper subgroup of Mn. 3

Lemma 1 (Dixon, AMM 1984) Let n 2 N3. Assume hCi = Mn. Then n
is a prime power or even.

19

Proof. For this proof let �(n) = r · 2s with odd r. (Since n � 3, we have
s � 1. The “old” meanings of r and s don’t occur in this proof.) Consider
the map

h : Mn �! Mn, w 7! wr·2s�1
.

This h is a group homomorphism with h(Mn) ✓ {v 2 Mn | v2 = 1} (group
of square roots of 1 modn). Since the w 2 C0 have odd order h(C0) ✓ {1}.

For w 2 C1 we have h(w) 2 hwi and h(w)2 = 1, hence h(w) is one of the
two roots of unity ±1 2 hwi.

Together we have h(C) ✓ {±1}.
If n is not a prime power (and a forteriori not a prime) there

is a decomposition n = pq into coprime factors p, q 2 N2. Since
2s|�(n) = lcm(�(p),�(q)) we may assume 2s|�(p). The chinese remainder
theorem provides a w 2 Mn with w ⌘ 1 (mod q) such that w mod p has
order 2s. Then h(w)/⌘ 1 (mod p), a forteriori h(w) 6= 1. Since h(w) ⌘ 1
(mod q) we also have h(w) 6= �1—except when q = 2.

Therefore if n is not even nor a prime power we have the contradiction
h(Mn) * {±1}. 3

This also completes the missing step of Section 2.2: Who knows the
private RSA key is able to factor the module n.

20

2.4 Factoring Algorithms

A crucial question for the security of RSA is: How fast can we factorize large

integers?

• There are “fast” factoring algorithms for integers of the form ab ± c
with “small” values a and c, the most prominent examples are the
Mersenne and Fermat primes 2b ± 1. The probability that the gen-
eration of RSA keys from random primes yields such a module is ex-
tremely low and usually neglected.

• Fermat factoring of n: Find an integer a �
p
n such that a2 � n is a

square = b2. This yields a decomposition

n = a2 � b2 = (a+ b)(a� b).

Example: n = 97343,
p
n ⇡ 311.998, 3122 � n = 1, n = 313 · 311. This

method is e�cient provided that we find an a close to
p
n, or a2 ⇡ n.

In the case n = pq of two factors this means a small di↵erence |p� q|.
(Un-) fortunately finding a seems to be hard.

• The fastest general purpose factoring algorithms

– number field sieve (Silverman 1987, Pomerance 1988, A. K.
Lenstra/ H. W. Lenstra/ Manasse/ Pollard 1990),

– elliptic curve factoring (H. W. Lenstra 1987, Atkin/ Morain
1993),

need time of size
Ln := e

3
p

lnn·(ln lnn)2 ,

hence are “subexponential”, but also “superpolynomial”. Anyway they
show that factoring is a significantly more e�cient attack on RSA than

exhaustion (“brute force”).

This results in the following estimates for factoring times:

integer bits decimal expense status
places (MIPS years)

rsa120 399 120 100 < 1 weak on a PC
rsa154 512 154 100 000 te Riele 1999
rsa200 665 200 (⇤) Franke 2005

1024 308 1011 insecure
2048 616 1015 for short-term security

(⇤) 80 CPUs à 2.2 GHz in 4.5 months

21

When we extrapolate these estimates we should note:

• they are rough approximations only,

• they hold only as long as nobody finds significantly faster factoring
algorithms.

Remember that the existence of a polynomial factoring algorithm is an open

problem.
Some recent developments are already incorporated into the table:

• A paper byA. K. Lenstra/ E. Verheul, Selecting cryptographic key
sizes summarizes the state of the art in the year 2000 and extrapolates
it.

• A proposal by Bernstein, Circuits for integer factorization triples
(!) the length of integers that can be factorized with a given expense,
using the fastest factoring algorithms.

• Special-purpose hardware designs by Shamir and his collaborators:

– TWINKLE (The Weizmann Institute Key Locating Machine)
(1999) is the realization in hardware of an idea by Lehmer from
the 1930s that accelerates factoring 100–1000 times,

– TWIRL (The Weizmann Institute Relation Locator) (2003) ac-
celerates factoring another 1000–10000 times following Bern-
stein’s idea.

Taken together these approaches make factoring 106 (or 220) times
faster using the number field sieve. However the order of magnitude
Ln of the complexity is una↵ected.

This progress lets the Lenstra/ Verheul estimates look overly optimistic.
1024-bit keys should no longer be used. 2048-bit keys might be secure enough
to protect information for a few years.

Recommendation: Construct your RSA module n = pq from primes p
and q that have bit lengths of at least 2048 bits, and choose them such
that also their di↵erence |p� q| has a bit length of about 2048 bits.

22

2.5 Iteration Attack

Consider a bijective map E : M �! M of a finite set M onto itself and
its inverse D = E�1 (think of E as an encryption function). Then E is
an element of the full symmetric group S(M) that has the (huge) order
#S(M) = (#M)!. Nevertheless this group is finite, thus there is an s 2 N1

with Es = 1M , hence
D = Es�1.

As a consequence an attacker can compute D from E by su�ciently many
iterations. This attack is relevant only for asymmetric ciphers where the
attacker knows E. The only protection against it is to choose the order of

E, the smallest s � 1 with Es = 1M , as large as possible.

The Example of RSA

Let M = Z/nZ, then #S(M) = n!, where n itself is a very large integer.
The attacker could compute En!�1, but even the fastest power algorithm
is not fast enough to accomplish this task in this universe. So the attack
doesn’t seem to put RSA into immediate danger.

However, as a closer look reveals, RSA encryption functions are con-
tained in a significantly smaller subgroup ofS(M)—fortunately the attacker
doesn’t know its order. To see this consider the map

� : N �! map(M,M), e 7! Ee with Ee(a) = ae mod n.

Here are some of its properties:

1. For e, f 2 N we have Eef = Ee � Ef since aef ⌘ (af)e (mod n) for all
a 2 M . Hence � is a homomorphism of the multiplicative semigroup
N.

2. If e ⌘ f (mod �(n)), then Ee = Ef : Assume f = e + k�(n), then
af = ae+k�(n)

⌘ ae (mod n) for all a 2 M .

3. If e mod �(n) is invertible, then Ee is bijective: Assume
de ⌘ 1 (mod �(n)), then Ed � Ee = E1 = 1M . Hence the map

�̄ : M�(n) �! S(M)

induced by � is a group homomorphism.

4. �̄ is injective: For if �(e) = Ee = 1M , then ae ⌘ a (mod n) for all
a 2 M , hence ae�1

⌘ 1 (mod n) for all a 2 Mn, hence �(n)|e� 1, thus
e ⌘ 1 (mod �(n)).

These remarks prove:

23

Proposition 5 The RSA encryption functions Ee form a subgroup

Hn S(M) that is isomorphic with M�(n) and has order '(�(n)) and ex-

ponent �(�(n)).

Of course the order of a single encryption function Ee could be even
much smaller: All we can say is that the cyclic subgroup hei M�(n) has
order s := ord(e) | �(�(n)).

This observation raises two problems:

1. How large is �(�(n))?

2. Under what conditions is ord(e) = �(�(n))? Or at least not signifi-
cantly smaller?

Answer to 1 (without proof): “In general” �(�(n)) ⇡ n
8 .

If we want to be sure about this we should choose p, q as special primes
p = 2p0 + 1, q = 2q0 + 1 with di↵erent primes p0, q0 � 3. Then for n = pq we
have

�(n) = kgV(2p0, 2q0) = 2p0q0 =
(p� 1)(q � 1)

2
⇡

n

2
.

If moreover p and q are superspecial primes, that is, p0 = 2p00 + 1 and
q0 = 2q00 + 1 are special primes too, then

�(�(n)) = 2p00q00 =
(p� 3)(q � 3)

8
⇡

n

8
.

By the prime number theorem, see Section 2.1, we may expect that super-
special primes exist in astronomic quantities.

Answer to 2: in most cases (also without general proof).
Again, if we want to be sure, we should confine our choices to special or

even superspecial primes. We use some elementary results on finite groups,
see Lemmas 21, 22, and 23 of Appendix A.10.

Let p be an odd prime number. In the additive cyclic group Z/2pZ we
consider the subsets:

Ep = {a mod 2p | 0 a < p, a even}� {0},

Op = {a mod 2p | 0 a < p, a odd}� {p}.

Clearly, Z/2pZ = {0, p} [Ep [Op, and

#Ep = #Op = p� 1.

The order of an element x 2 Z/2pZ is

ordx =

8
>>>><

>>>>:

1 () x = 0,

2 () x = p,

p () x 2 Ep,

2p () x 2 Op.

24

We transfer this result to an abstract cyclic group Z2p with generating
element g via the isomorphism

⌧ : Z/2pZ �! Z2p, x 7! gx.

Let Ep = ⌧EP and Op = ⌧OP . Then the result is:

Lemma 2 The order of an element h 2 Z2p is

ordh =

8
>>>><

>>>>:

1 () h = 1,

2 () h = gp,

p () h 2 Ep,

2p () h 2 Op.

Next we study the orders of the elements of the direct product Z2p⇥Z2q

for two di↵erent odd primes p and q. Applying Lemma 21 we see that the
order of a pair (g, h) for g 2 Z2p and h 2 Z2q is given by the following table:

ord g =
1 2 p 2p

ordh = 1 1 2 p 2p
2 2 2 2p 2p
q q 2q pq 2pq
2q 2q 2q 2pq 2pq

An obvious count yields:

Proposition 6 Let p and q be two di↵erent odd primes. Then the direct

product group Z2p ⇥ Z2q has

(i) 1 element of order 1,

(ii) 3 elements of order 2,

(iii) p� 1 elements of order p,

(iv) 3 · (p� 1) elements of order 2p,

(v) q � 1 elements of order q,

(vi) 3 · (q � 1) elements of order 2q,

(vii) (p� 1) · (q � 1) elements of order pq,

(viii) 3 · (p� 1) · (q � 1) elements of order 2pq.

25

Again let p be a prime number. Then the multiplicative group Mp =
(Z/pZ)⇥ of the finite field Z/pZ is cyclic of order p � 1. Let q be a prime
di↵erent from p and let n = p · q. Then by the Chinese Remainder Theorem
Mn

⇠= Mp⇥Mq is (up to isomorphy) the direct product of two cyclic groups
of orders p� 1 and q � 1. Hence:

Lemma 3 Let n = pq be the product of two di↵erent odd primes p and q.
Then the multiplicative group Mn = (Z/nZ)⇥ of the quotient ring Z/nZ
has order '(n) = (p � 1)(q � 1) and exponent �(n) = lcm(p � 1, q � 1). In
particular Mn is not cyclic.

The latter statement is due to the common divisor 2 of p� 1 and q � 1.
We now consider the case where p = 2p0 + 1 and q = 2q0 + 1 are special

primes. Then
'(n) = 4p0q0 and �(n) = 2p0q0.

By Proposition 5 the RSA encryption functions for the module n = pq
make up a group Hn isomorphic with M�(n). For special primes we therefore
have by Theorem 2 in Appendix A.4:

Proposition 7 Let n = pq be the product of two di↵erent special primes

p = 2p0 + 1 and q = 2q0 + 1. Then the RSA group

Hn
⇠= M�(n)

⇠= Zp0�1 ⇥ Zq0�1

is the product of two cyclic groups of orders p0 � 1 and q0 � 1.

In order to derive some more easy results we assume that p and q are
superspecial primes, with p0 = 2p00 + 1 and q0 = 2q00 + 1. Then

Hn
⇠= M�(n)

⇠= Z2p00 ⇥ Z2q00 ,

and Proposition 6 applies for the primes p00 and q00:

Proposition 8 Let n = pq be the product of two di↵erent superspecial

primes p = 2p0 +1 and q = 2q0 +1 with p0 = 2p00 +1 and q0 = 2q00 +1. Then
the RSA group Hn consists of

(i) 1 element of order 1,

(ii) 3 elements of order 2,

(iii) p00 � 1 elements of order p00,

(iv) 3 · (p00 � 1) elements of order 2p00,

(v) q00 � 1 elements of order q00,

26

(vi) 3 · (q00 � 1) elements of order 2q00,

(vii) (p00 � 1) · (q00 � 1) elements of order p00q00,

(viii) 3 · (p00 � 1) · (q00 � 1) elements of order 2p00q00.

Since 2p00q00 = �(�(n)) is the exponent of Hn we see that almost all of its
elements have their orders near the maximum. More precisely the number
of elements of order < 1

2 �(�(n)) = p00q00 is

1 + 3 + 4 · (p00 � 1) + 4 · (q00 � 1) = 4 · (p00 + q00 � 1).

Corollary 1 The number of elements of Hn with order < 1
2 �(�(n)) is

p+ q � 7.

Proof. Note that p00 = (p� 3)/4. 3

Thus this number is ⇡ 2·
p
n if p and q—as recommended in Section 2.4—

are chosen near
p
n. Then the proportion of elements of “small” orders is

⇡ 2/
p
n, and this proportion asymptotically tends to 0 with growing values

of n.
As a consequence we resume: With negligeable exceptions s has the order

of magnitude of n/8. The best known general results are in Chapter 23 of
Shparlinski’s book, see the references for these lecture notes.

In addition to Section 2.2 we formulate the task

(F) Finding the order s of the encryption function.

In the sense of complexity theory we have the implication

(F) �! (A)

but maybe not the reverse implication. If the order s is known, then D =
Es�1 and thus d = es�1 are e�ciently computable. Finding the order of the

encryption function is at least as di�cult as factoring the module.

27

2.6 Breaking Single Ciphertexts

Breaking a single ciphertext (without necessarily computing the private key)
could be even easier: For a given ciphertext c we could have Er

e(c) = c
even if Er

e 6= 1M . If a is the corresponding plaintext, c = Ee(a), then the
cryptanalyst can compute:

Er�1
e (c) = De(E

r
e(c)) = De(c) = a.

From a mathematical viewpoint we have the situation:

• The groupM�(n) acts on the setM = Z/nZ, as does its cyclic subgroup
G := hei M�(n).

• For a 2 M the orbit is G · a = {ae
k
| 0 k < s} (where s is the order

of e in the multiplicative group M�(n)).

• The stabilizer Ga = {f 2 G | af ⌘ a (mod n)} is a subgroup of G.
We have a natural bijective correspondence between the sets G ·a and
G/Ga.

• For the orbit length t = #G · a we have

t =
s

#Ga
, t|s|�(�(n))

Er
e(c) = c () Er

e(a) = a () t|r.

• G · c = G · a and #Gc = #Ga. (The two stabilizers are conjugate.)

• Finding the orbit length t of a and c is at least as di�cult as breaking
the ciphertext c.

This suggests yet another problem:

3. Under what conditions is t = s, in other words, which stabilizers Ga

are trivial? Or at least quite small?

Answer once more (without proof): in most cases. For superspecial
primes p and q where �(�(n)) = 2p00q00 we expect by similar considerations
as in Section 2.5 that t < p00q00 only for a negligeable set of exceptions.

The following two papers show how low is the risk of hitting a small
orbit length by pure chance, enabling an iteration attack:

• J. J. Brennan/ Bruce Geist, Analysis of iterated modular expo-
nentiation: The orbits of x↵ mod N . Designs, Codes and Cryptog-
raphy 13 (1998), 229–245.

• John B. Friedlander/ Carl Pomerance/ Igor E. Shparlin-
ski, Period of the power generator and small values of Carmichael’s
function. Mathematics of Computation 70 (2001), 1591–1606, +
71 (2002), 1803–1806.

28

2.7 Re-Use of a Module

Question: What happens if two di↵erent participants use the same RSA
module n?

In other words, A and B use (n, eA) and (n, eB) as public keys.
Obviously A and B may read each other’s messages since both can fac-

torize n and hence compute the other’s private key. Thus a common module
makes sense only in a cooperative situation where A and B absolutely trust
each other.

However it’s even worse: A message a sent to both A and B is readable
by everyone. The ciphertexts are:

cA = aeA mod n, cB = aeB mod n.

Assuming eA and eB coprime is no significant loss of generality. Then the
attacker, using the extended Euclidean algorithm, finds coe�cients x and y
with

xeA + yeB = 1.

Necessarily x and y have opposite signs, assume x < 0. If gcd(cA, n) > 1,
then the attacker can decompose n and is done. Otherwise she computes

g := c�1
A mod n

by congruence division and gets

g�x
· cyB ⌘ (aeA)x · (aeB)y ⌘ a (mod n),

breaking the ciphertext without computing the private keys dA and dB.
Hence the common module n is secure only when A and B trust each

other and moreover keep the module secret. But in this situation it makes
much more sense to use a symmetric cipher.

29

2.8 Small Exponents

Question: Is RSA in danger if someone chooses a small public exponent e?

The exponent e = 1 is nonsensical since it leaves plaintexts unencrypted.
The exponent e = 2 doesn’t work for RSA since it is even and thus not

coprime with �(n). Nevertheless the related Rabin cipher uses e = 2. Here
the receiver of the message must be able to take square roots mod n, and
this works since he knows the prime factors of n (see later). (By the way
he must also be able to recognize the true plaintext among several di↵erent
square roots.)

Same Message for Several Receivers

For RSA the smallest potentially suited exponent is e = 3. However it en-
ables an attack that applies as soon as someone sends the same message a
to three di↵erent receivers A, B, and C. Let their public keys be (nA, 3),
(nB, 3), and (nC, 3). Assume the modules nA, nB, and nC are pairwise co-
prime, otherwise the attacker factorizes at least two of them and reads a.
Then (with some luck) she intercepts three ciphertexts

cA = a3 mod nA, cB = a3 mod nB, cC = a3 mod nC,

with 0 a < nA, nB, nC, thus a3 < nAnBnC. Using the chinese remainder
algorithm she constructs an integer c̃ 2 Z with

0 c̃ < nAnBnC

such that
c̃ ⌘ cX mod nX for X = A,B,C.

By uniqueness c̃ = a3 in Z. So she computes a = 3
p
c̃ by taking the integer

root in Z. This is an e�cient procedure. (In this situation she doesn’t succeed
with computing the private exponents.)

This attack obviously generalizes to other “small” shared public expo-
nents e: If the same message is sent to e di↵erent people, then everybody
can read it. This attack is not completely unrealistic: Think for example of
fixed “protocol information” at the beginning of a larger message. Even in
classical cryptography an important maxim was: Never encrypt the same

plaintext with di↵erent keys.

In practice the exponent e = 216+1 = 65537 is considered as su�ciently
secure for “normal” situations.

Stereotypical Message Parts

Consider the key parameters (n, e, d). Imagine an attack with known plain-
text that reads:

30

Der heutige Tagesschluessel ist:********

(“The master key for today is: . . . ”, example by Julia Dietrichs) with known
(stereotypical) 32 byte part “Der heutige Tagesschluessel ist:”, and
unknown 8 byte part “********”.

This message is encoded by the 8-bit character code ISO-8859-1 (used
for German texts) as a sequence of 40 bytes or 320 bits, and for encryption
by RSA interpreted as an integer a 2 [0 . . . n� 1] (assume n has more then
320 bits, and e = 3). Decompose a as a = b + x where b corresponds to
the known, and x, to the unknown part. Since the latter forms the end of
the message and consists of 64 bits we know x < 264. Encryption yields the
ciphertext

c = ae mod n = (b+ x)e mod n.

Hence the secret x is a root of the polynomial

(T + b)e � c 2 (Z/nZ)[T].

At first sight this observation doesn’t seem alarming since we know of no
general e�cient algorithms that compute roots. However algorithms for cer-
tain special cases exist, for instance:

Coppersmith’s algorithm
Let f 2 (Z/nZ)[T] be a polynomial of degree r. The algorithm
finds all roots x of f with 0 x < r

p
n (or proves that there are

none).
The execution time is polynomial in log n and r.
(The algorithm uses the “LLL algorithm” for reduction of lattice
bases.)

In our example n has at least 321 bits, and e = 3. Thus the algorithm
outputs x since x3 < 2192 < 2320 < n.

This is only a simple example of a larger class of attacks for special
situations that amount to a computation of roots mod n.

Exercise. Modify the attack for a situation where the unknown part of
the plaintaxt consists of some contiguous letters surrounded by known
plaintext sequences.

31

2.9 The Signature Trap

The signature trap doesn’t challenge the security of RSA itself, but the frame
conditions of its use: Since reversing the order of encryption and decryption
is the basic mechanism of digital signatures the user has to take care that
he doesn’t inadvertently decrypt a ciphertext in the erroneous belief that
he digitally signs a document. Would the standard input to the signature
algorithm be a normal plaintext, the user would realize this situation at
once. However for (at least) three reasons the situation is di↵erent:

1. To get acceptable performance usually a digital signature is applied to
a (cryptographic) hash value of a document. This cannot be distigu-
ished from a random bitstring.

2. Strong authentication requires digitally signing a random bitstring in-
stead of entering a password to prove the user’s identity. Even if the
result was a decrypted plaintext—the user wouldn’t see it at all since
it is immediately sent to the communication partner (that might be a
server, or a “man in the middle”).

3. Moreover the attacker could present an arbitrary text that is “cam-
ouflaged” by some kind of encryption, and require the user to “sign”
(i. e. decrypt) it. Even a close inspection of the result would not detect
the fraud—see below. This is a otherwise very useful property of RSA:
It is the basis for blind signatures and hence the generation of digital
pseudonyms and anonymous transactions.

By the way this an instance of an attack with chosen ciphertext. To escape
this attack in practice each of the three (or four) functions

• encryption,

• digital signature,

• strong authentication,

• (optionally) blind signature,

should use a di↵erent key pair.
Now for the “camouflage” that disguises the chosen ciphertext attack.

Here is the procedure:

1. The attacker M (“Mallory”) has an intercepted ciphertext x = EA(a)
and would like to read it. He encrypts it as y = C(x) using a function
C known only to him.

2. He presents y to his victim A (“Alice”) and requires a digital signature.
A generates z = DA(y).

32

3. M removes the “camouflage” by a suitable inverse transformation C 0.
For this he needs a pair (C,C 0) of transformations such that

C 0
�DA � C = DA.

Then a = DA(x) = C 0(z).

As a peculiarity of RSA such pairs (C,C 0) of transformations exist: Let
EA(a) = ae mod n, and take C as the shift by ue on Mn = (Z/nZ)⇥, and
C 0 as the multiplication by u�1 mod n where u 2 Mn is randomly chosen.
Thus the attack runs through the steps:

1. M chooses u und computes y = C(x) = uex mod n.

2. A generates z = yd mod n.

3. M computes

C 0(z) = zu�1 = ydu�1 = uedxdu�1 = xd = a

in Z/nZ.

33

2.10 More Attacks

Finally we give a short overview over some other attacks on RSA. For a com-
prehensive treatment consult the paper by D. Boneh (see the introduction
of this section):

1. Small private exponent: M. Wiener detected a way of e�ciently
computing the private key d from the public key (n, e) using continued
fractions in the case d < 1

3 · 4
p
n.

2. Related plaintexts after Franklin/Reiter. Assume two di↵erent
plaintexts a1 and a2 are related by an a�ne equation a2 = sa1 + t
with known coe�cients s, t 6= 0. Then the corresponding plaintexts
are e�ciently computable from the public key (n, e), the coe�cients s
and t and the ciphertexts. Coppersmith found a situation that forces
such an a�ne equation in the case where a1 and a2 originate from the
same plaintext by “padding” di↵erently.

3. Partial leak after Boneh/Durfee/Frankel/Coppersmith. If the
last quarter of the bits of one of the integers d (the private exponent),
p, or q (the prime factors of the module) are known, then n may be
e�ciently factorized.

4. Timing and power attacks after Kocher. The attacker observes
the CPU during a decryption and measures the execution time or the
power consumption. From this she gains informations about the bits
of the private exponent. See the binary power algorithm, Section 1.2.

5. Di↵erential fault analysis after Shamir et al. The attacker exposes
the processor (for instance a smartcard) to environment conditions
slightly outside the range where the specification guarantees a fault-
less operation, for instance by deforming, heating, radiation. Then the
processor will produce single faulty bits that allow statistical inferences
about the internal parameters.

Other attacks don’t target the RSA algorithm itself but bugs in the imple-
mentation, faulty use in cryptographic protocols, flawed interaction with the
system environment, and other mistakes.

In some situations using modules with more then two prime factors might
even be advantageous, as the following paper suggests:

• M. Jason Hinek, Mo King Low, Edlyn Teske: On some attacks on
multi-prime RSA. SAC 2002, 385–404.

34

