
Chapter 3

Primality Tests

A crucial question when implementing RSA is how to find the necessary
primes for key generation. The answer will be given in form of e�cient
procedures. Start with a random integer of the desired length and test it for
primality. If it is not prime take the next integer and so on. Eventually a
prime will occur.

For this we need procedures that e�ciently decide whether an integer is
prime or not—primality tests.

We’ll encounter a phenomenon that is familiar also with other mathe-
matical problems (for instance linear optimization, numerical approximation
of zeroes of polynomials over the real or complex numbers):

• There is an algorithm that gets by with polynomial cost.

• There is a “standard algorithm” (in the examples: the simplex method,
the Newton algorithm) that is much more e�cient for “most” in-
stances, but needs more than polynomial cost in the “worst case”.
In practice this algorithm is the preferred one.

For primality testing the AKS algorithm is polynomial, but usually slower
than the established Rabin algorithm. The latter is usually very e�cient,
but in the worst case even fails to deliver a correct result.

All these primality tests have a considerable overhead. Therefore for a
practical implementation it makes sense to first check divisibility by “small”
primes, say primes < 106, depending on the available storage (precompute
a list L of small primes).

If we need a random prime of a certain size we randomly choose an
integer r of this size. If r is even we increment it by 1. Then we sieve an
interval [r, r+s] for multiples of the primes in L by Eratosthenes’ method.
We test the remaining integers for primality until we find one that passes
the test. In most cases this will be the first one already.

35

3.1 The Pseudoprime Test

How can we identify an integer as prime? The “naive” approach is trial
divisions by all integers 

p
n, made perfect in the form of Eratosthenes

sieve. An assessment of the cost shows that this approach is not e�cient
since

p
n = exp(12 log n) grows exponentially with the length log n of n.

An approach to identify primes without trial divisions is suggested
by Fermat’s theorem: If n is prime, then an�1

⌘ 1 (mod n) for all
a = 1, . . . , n � 1. Note that this is a necessary condition only, not a suf-
ficient one. Thus we say that n is a (Fermat) pseudoprime to base a
if an�1

⌘ 1 (mod n). Hence a prime number is a pseudoprime to each base
a = 1, . . . , n� 1.

Examples

1. The congruence 214 ⌘ 4 (mod 15) shows that 15 is not prime.

2. We have 2340 ⌘ 1 (mod 341) although 341 = 11 · 31 is not prime.
Anyway 3340 ⌘ 56 (mod 341), hence 341 fails the pseudoprime test to
base 3.

The pseudoprime property is not su�cient for primality. Therefore we
call n a Carmichael number if n is a pseudoprime to each base a that is
coprime with n, but n is not a prime.

Another way to express pseudoprimality is that the order of a in Mn

divides n � 1. Thus n is a Carmichael number or prime if and only if
�(n) |n� 1 with the Carmichael function �.

Unfortunately there are many Carmichael numbers, so pseudoprimal-
ity cannot even considered as “almost su�cient” for primality. In 1992 Al-
ford, Granville, and Pomerance proved that there are infinitely many
Carmichael numbers.

The smallest Carmichael number is 561 = 3 · 11 · 17. This is a direct
consequence of the next proposition.

Proposition 9 A natural number n is a Carmichael number if and only

if it is not prime, squarefree, and p� 1 |n� 1 for each prime divisor p of n.
An odd Carmichael number has at least 3 prime factors.

Proof. “=)”: Let p be a prime divisor of n.
Assume p2|n. Then Mn contains a subgroup isomorphic with Mpe for

some e � 2, hence by Proposition 18 in Appendix A.3 also a cyclic subgroup
of order p. This leads to the contradiction p |n� 1.

Since Mn contains a cyclic group of order p � 1 it has an element a of
order p� 1, and an�1

⌘ 1 (mod n), hence p� 1 |n� 1.

36

“(=”: Since n is squarefree by the chinese remainder theorem the mul-
tiplicative group Mn is the direct product of the cyclic groups F⇥

p where p
runs through the prime divisors of n. Since all p� 1 |n� 1 the order of each
element of Mn divides n� 1.

Proof of the addendum: Let n be an odd Carmichael number. Suppose
n = pq with two primes p and q, say p < q. Then q � 1 | n � 1 = pq � 1,
hence p� 1 ⌘ pq � 1 ⌘ 0 (mod q � 1). This contradicts p < q. 3

37

3.2 Strong Pseudoprimes

For a stronger pseudoprime test we use an additional characteristic property
of primes.

Assume that n is odd, but not a prime nor a prime power. Then the
residue class ring Z/nZ contains non-trivial square roots of 1 besides ±1.
If we find one of these, then we have a proof that n is composite. But how
to find non-trivial square roots of 1 when the prime decomposition of n is
unknown?

Picking up an idea from Section 2.2 we decompose n� 1 as

(1) n� 1 = 2s · r with odd r

(and call s the 2-order of n � 1). Let a 2 Mn. If n fails the pseudoprime
test to base a, then it is identified as composite. Otherwise the order of a in
the multiplicative group Mn divides n� 1. Consider the sequence

(2) ar mod n, a2r mod n, . . . , a2
sr mod n = 1 .

Possibly already ar ⌘ 1 (mod n), and thus the complete sequence consists
of 1’s. Then we reject a without deciding on n. Otherwise the first 1 occurs
at a later position. Then the element before it must be a square root of 1,
but 6= 1. If we have bad luck, it is �1. In this case again we reject a without
a decision. But if we are lucky we have found a non-trivial square root of 1,
and identified n as a composite number.

Now let n be an arbitrary positive integer, and assume that n � 1 is
decomposed as in Equation (1). Then (after Selfridge ca 1975) we call n
a strong pseudoprime to base a, if

(3) ar ⌘ 1 (mod n) or a2
kr

⌘ �1 (mod n) for a k = 0, . . . , s� 1.

Lemma 4 (i) A prime number is a strong pseudoprime to each base that

is not a multiple of this prime.

(ii) A pseudoprime to base a is a forteriori a pseudoprime to base a.

Proof. (i) If n is prime and ar/⌘ 1, then in the sequence (2) we choose k

maximal with 0  k < s and a2
kr/⌘ 1 (mod n). Since ±1 are the only square

roots of 1 mod n we conclude a2
kr

⌘ �1 (mod n).
(ii) The definition (3) immediately yields an�1

⌘ 1 (mod n). 3

Now we face an analoguous situation as in Section 2.3 with u = n � 1.
The set

Bu =
s[

t=0

{w 2 Mn | wr·2t = 1, wr·2t�1
= �1 (if t > 0)}

38

exactly consists of the bases to which n is a strong pseudoprime, thus has
the property (En,u). These bases are called prime testimonials for n.

The Carmichael number n = 561 fails the test even with a = 2: We
have n� 1 = 560 = 16 · 35,

235 ⌘ 263 (mod 561), 270 ⌘ 166 (mod 561),

2140 ⌘ 67 (mod 561), 2280 ⌘ 1 (mod 561).

Hence 561 is unmasked as a composite number since 67/⌘ ±1. The small-
est composite integer that is a strong pseudoprime to 2, 3, and 5, is
25326001 = 2251 · 11251. The only composite number < 1011 that is a strong
pseudoprime to the bases 2, 3, 5, and 7, is 3 215 031 751. This observations
make us hope that the strong pseudoprime test is suited for detecting primes.

Proposition 10 Let n � 3 be odd. Then the following statements are equiv-

alent:

(i) n is prime.

(ii) n is a strong pseudoprime to each base a that is not a multiple of n.

Proof. “(i) =) (ii)”: See Lemma 4 (i).
“(ii) =) (i)”: By Lemma 4 (ii) n is a prime or satisfies the definition of

a Carmichael number, in particular �(n) | n� 1 = u, and n is squarefree,
and a forteriori not a proper prime power. Since Bu = Mn by assumption,
Lemma 1 says that n is a prime power. Hence n is prime. 3

Corollary 2 If n is not prime, then the number of bases < n to which n is

a strong pseudoprime is at most
'(n)
2 .

Proof. If n is a Carmichael number, then this follows from Proposition 4.
Otherwise Au = {w 2 Mn | wn�1 = 1} < Mn is a proper subgroup, and
Bu ✓ Au. 3

With a little more care we even get the Rabin/Monier bound '(n)
4

(Exercise).

39

3.3 Miller’s Primality Test

How can we exploit the criterion for strong pseudoprimes to su�ciently
many bases and construct a practically usable test? First we formulate the
algorithm for one base a and assess its cost.

Since we anyway compute an�1 by the binary power algorithm it makes
sense to compute the complete sequence of powers beginning with ar in a
passing strike. Then the e↵ort is about the same as for the “weak” pseudo-
prime test alone. Thus the test for strong pseudoprimes to the base a runs
as follows:

Procedure sPPT(a)
[Strong pseudoprime test to base a]
Input parameters:

n = the integer to be tested (odd � 3)
a = base (in the integer interval [2 . . . n� 1])

Output parameters:
compo = a Boolean value with the meaning

TRUE: n is composite.
FALSE: The test has no definite result

[i. e. n is a strong pseudoprime to base a].
Instructions:

Compute s = 2-order of n� 1.
Compute r = odd part of n� 1.
Compute b = ar mod n (using the binary power algorithm).
Set k = 0.

[Loop: entry condition b = a2
kr mod n

The Boolean variable ‘done’, initiated with FALSE, decides
about repeating the loop.]
While not done:

If b = 1: set done = TRUE.
If k = 0: set compo = FALSE,
else: set compo = TRUE. [1 without preceding -1]

If b = n� 1 and k < s:
set compo = FALSE, done = TRUE.

If k = s and b 6= 1:
set compo = TRUE, done = TRUE.

In all other cases [k < s, b 6= 1, b 6= n� 1]
replace b by b2 mod n,
replace k by k + 1.

To assess the cost we break the procedure down into single steps
that each multiply two integers mod n. Computing ar mod n takes at most
2 · log2(r) steps. In each of the up to s loops we compute a square. Since

40

log2(n� 1) = s+ log2(r) we have to compute at most 2 · log2(n) products
mod n. Each of these squares needs at most N2 “primitive” integer multi-
plications where N is the number of places of n in the used representation
of the number system. Computing r takes s divisions by 2 that can be ne-
glected. Hence a coarse estimate of the total cost yields O(log(n)3) for a
single base.

Miller’s primality test is the sequence of strong peudoprime tests to
the bases 2, 3, 4, 5, This doesn’t look e�cient: In the worst case we test a
true prime, then we run through all bases < n. However as Miller showed,
significantly less bases su�ce—presupposed that the extended Riemann hy-

pothesis is true. In the next section we’ll see some explanation but without
complete proofs.

41

3.4 The Extended Riemann Hypothesis (ERH)

A (complex) character mod n is a function

� : Z �! C

with the properties:

1. � has period n.

2. �(xy) = �(x)�(y) for all x, y 2 Z.

3. �(x) = 0 if and only if ggT(x, n) > 1.

The characters mod n bijectively correspond to the group homomorphisms

�̄ : Mn �! C⇥

in a canonical way.
Examples are the trivial character �(a) = 1 for all a that are coprime

with n, and the Jacobi character �(a) = (an) known from the theory of
quadratic reciprocity, see Appendix A.5.

A character defines an L-function by the Dirichlet series

L�(z) =
1X

a=1

�(a)

az
.

This series converges absolutely and locally uniformly in the half-plane
{z 2 C | Re(z) > 1} because ai·Im(z) = ei·ln(a)·Im(z) has absolute value 1,
hence ����

�(a)

az

���� =
����

�(a)

aRe(z) · ai·Im(z)

���� =
1

aRe(z)
or = 0.

It admits an analytic continuation to the right half-plane Re(z) > 0 as a
holomorphic function, except for the trivial character where 1 is a simple
pole.

The function L� has the Riemann property if all its zeroes in the strip
0 < Re(z)  1 are on the line Re(z) = 1

2 . The Riemann hypothesis states
just this property for the Riemann zeta function, the extended Riemann
hypothesis (ERH), for all L-functions for characters mod n.

The zeta function is defined for Re(z) > 1 by

⇣(z) :=
1X

a=1

1

az
=

Y

p prime

1

1� 1
pz

where the last equation is Euler’s product formula. Hence for the trivial
character �1 mod n we have:

L�1(z) =
X

gcd(a,n)=1

1

az
= ⇣(z) ·

Y

p|n prime

✓
1�

1

pz

◆
;

and this L-function has the same zeroes as ⇣ in Re(z) > 0.

42

Proposition 11 (Ankeney/Montgomery/Bach) Let c = 2/ ln(3)2 =
1.65707 Let � be a nontrivial character mod n whose L-function L� has

the Riemann property. Then there is a prime p < c · ln(n)2 with �(p) 6= 1.

We omit the proof.

Corollary 1 Suppose ERH is true. Let G < Mn be a proper subgroup. Then

there is a prime p with p < c · ln(n)2 whose residue class modn is in the

complement Mn �G.

Proof. There exists a nontrivial homomorphism Mn/G �! C⇥, thus a char-
acter mod n with G ✓ ker� ✓ Mn. 3

Proposition 12 (Miller) Let the integer n � 3 be odd and a strong pseu-

doprime to all prime bases a < c · ln(n)2 with c as in Proposition 11. Assume

that the L-function of each character for each divisor of n has the Riemann
property. Then n is prime.

Proof. We first show that n is squarefree.
Assume p2 |n for some prime p. The multiplicative group Mp2 is cyclic

of order p(p� 1). In particular the homomorphism

Mp2 �! Mp2 , a 7! ap�1 mod p2,

is nontrivial. Its image is a subgroup G < Mp2 of order p, and is cyclic, hence
isomorphic with the group of p-th roots of unity in C. The composition of
these two homomorphisms yields a character mod p2. Thus Proposition 11
gives a prime a < c · ln(p2)2 with ap�1/⌘ 1 mod p2. The order of a in Mp2

divides p(p � 1). Suppose an�1
⌘ 1 mod n. Then the order also divides

n � 1. Since p is coprime with n � 1 the order divides p � 1, contradicting
the definition of a. Hence an�1/⌘ 1 mod n, and this in turn contradicts the
strong pseudoprimality of n. Therefore n is squarefree.

Next we show that n doesn’t have two di↵erent prime factors.
Assume p and q are two di↵erent prime divisors of n. Denote the 2-order

of an integer x by ⌫2(x). We may assume that ⌫2(p� 1) � ⌫2(q � 1). Let

r =

⇢
p, if ⌫2(p� 1) > ⌫2(q � 1),
pq, if ⌫2(p� 1) = ⌫2(q � 1).

Again by Proposition 11 there is an a < c · ln(r)2 with (ar) = �1. If u is the

odd part of n � 1, and b = au, then also (br) = �1, in particular b 6= 1. By

strong pseudoprimality there is a k with b2
k
⌘ �1 mod n. Thus b has order

2k+1 in Mp and in Mq. In particular 2k+1
| q � 1.

43

In the case ⌫2(p � 1) > ⌫2(q � 1) even 2k+1
|
p�1
2 . We conclude

b(p�1)/2
⌘ 1 (mod p), but this contradicts (bp) = (br) = �1 by Euler’s cri-

terion for quadratic residues.
In the case ⌫2(p � 1) = ⌫2(q � 1) we have (bp)(

b
q) = (br) = �1.

Thus (without restriction) (bp) = �1, (bq) = 1. By Euler’s criterion

b(q�1)/2
⌘ 1 (mod q), hence 2k+1

|
q�1
2 , k + 2  ⌫2(q � 1) = ⌫2(p� 1), hence

also b(p�1)/2
⌘ 1 (mod p), contradicting (bp) = �1. 3

Therefore for Miller’s primality test it su�ces to perform the strong
pseudoprime test for all prime bases a < c · ln(n)2. This makes total costs
of O(log(n)5).

As an example, for a 512-bit integer, that is n < 2512, testing the 18698
primes < 208704 is su�cient. Despite its e�ciency this procedure takes some
time. Therefore in practice this test is modified in way that is (in a sense
yet to specify) not completely exact, but much faster. This is the subject of
the next section.

44

3.5 Rabin’s Probabilistic Primality Test

Rabin transferred an idea of Solovay and Strassen to Miller’s test. As
it later turned out Selfridge had used the method already in 1974.

If we choose a random base a in [2 . . . n � 1], then n “in general” fails
the strong pseudoprime test to base a except when it is prime. But what
means “in general”? How large is the probability? To answer this question
we look at the corollary of Proposition 10 where the tighter bound 1

4 was
stated without proof.

Note that the bound 1
4 is sharp. To see this we consider integers of the

form
n = (1 + 2t)(1 + 4t)

with odd t (and assume that p = 1+2t and q = 1+4t are prime—example:
t = 24969, p = 49939, q = 99877). Then n� 1 = 2r with r = 3t+ 4t2, and

Bu = {a | ar ⌘ 1 (mod n)} [{a | ar ⌘ �1 (mod n)}.

Since gcd(r, p� 1) = gcd(3t+ 4t2, 2t) = t = gcd(r, q � 1), each of these two
congruences has exactly t2 solutions. Hence #Bu = 2t2,

#Bu

n� 1
=

2t2

2 · (3t+ 4t2)
=

t

3 + 4t
=

1

4 + 3
t

.

However most composite integers don’t even come close to this bound 1
4 .

In general assume we are given a family (M(n))n�1 of sets
M(n) ✓ [1 . . . n� 1] and a real number " 2]0, 1[with

1. M(n) = [1 . . . n� 1] if n is prime,

2. #M(n)  " · (n� 1) for all su�ciently large odd composite integers n.

Moreover we assume that the property a 2 M(n) is e�ciently decideable for
all a 2 [1 . . . n � 1], i. e. with costs that grow at most polynomially with
log(n). Then we have a corresponding (abstract) pseudoprime test:

1. Choose a random a 2 [1 . . . n� 1].

2. Check whether a 2 M(n).

3. Output:

(a) If no: n is composite.

(b) If yes: n is pseudoprime to a.

The corresponding probabilistic primality test consists of a series of
k of these pseudoprime tests to independently chosen bases a (note that
this allows for accidental repetitions). If a 62 M(n), we call a a witness for

45

compositeness of n. If always a 2 M(n) (we find no witnesses), then n is
almost certainly a prime. We may assign an “error probability” � to this
event. This is computed in the following way (no it is not = "k):

Consider the set of odd r-bit integers, that is odd positive integers < 2r.
Let X be the subset of composite numbers, and Yk, the subset of integers
that pass the first k of a given series of independent (abstract) pseudoprime
tests. The probability that a composite integer makes it into this subset is
the conditional probability P (Yk|X)  "k.

Nevertheless more important for the practical application is the “con-
verse” probability � = P (X|Yk) that a number n that passed all the tests is
still composite. This probability is assessed using Bayes’ formula:

P (X|Yk) =
P (X) · P (Yk|X)

P (Yk)


P (Yk|X)

P (Yk)


1

q
· "k  r · ln(2) · "k,

where we also used the density of primes estimated by the prime number
theorem:

P (Yk) � P (prime) =: q �
1

r · ln(2)

(the latter inequality being rather tolerant since we consider only odd num-
bers). Thus the “error probability” � = P (X|Yk) might be larger than "k.
We can (and should) reduce it by restricting the set we search for primes,
thereby enlarging P (Yk). For example before starting the series of pesudo-
prime tests we could try to divide by all primes say < 100r.

ForRabin’s primality test we takeM(n) as the set of bases n is a strong

pseudoprime to, and " = 1
4 . If n passes 25 single tests then it is prime with

a quite small error probability. The probability that an exact computation
produces a false result due to a hardware nor software error is larger than
the error probability of Rabin’s algorithm. Knuth even doubts whether a
future published proof of the extendedRiemann hypothesis might ever be as
trustworthy. Nevertheless from a mathematical viewpoint we are unsatisfied
when we can’t be sure that we really found a prime.

For further information on the error probability of a probabilistic pri-
mality test read

• S. H. Kim/C. Pomerance: The probability that a random probable
prime is composite. Math Comp. 53 (1989), 721–741.

• Alfred J. Menezes, Paul C. van Oorschot, Scott A. Van-
stone: Handbook of Applied Cryptography. CRC Press, Boca Raton
1997, p. 147.

46

3.6 RSA and Pseudoprimes

To use RSA we need primes. The probabilistic Rabin primality test solves
the problem of finding them in a highly e�cient, but not perfectly satisfying
way: We could catch a “wrong” prime. What could happen in this case?

For an analysis of the situation let n = pq be a putative RSA module
where p and q are not necessarily primes, but at least coprime. For the
construction of the exponents d, e with

de ⌘ 1 (mod �(n)) (or (mod '(n)))

we use the possibly wrong values

'̃(n) := (p� 1)(q � 1), �̃(n) := kgV(p� 1, q � 1)

instead of the true values '(n) and �(n) of the Euler and Carmichael
functions.

How do the RSA algorithms work with the “false” values? Let a 2 Z/nZ
be a plaintext. As usual the case gcd(a, n) > 1 leads to a decomposition
of the module, we ignore it because of its extremely low probability. So we
assume gcd(a, n) = 1, and ask whether

ade�1 ?
⌘ 1 (mod n)

holds. By the chinese remainder theorem this holds if and only if

ade�1
⌘ 1 (mod p) and (mod q) .

A su�cient condition is

ap�1
⌘ 1 (mod p) and aq�1

⌘ 1 (mod q) .

Thus a message a might be incorrectly decrypted only if p or q is not a
pseudoprime to base a. Hence:

• If instead of a prime factor p we use a Carmichael number, then
RSA works correctly despite the “false” parameters, at least if a is
coprime with n, though the (extremely low) probability of accidentally
factorizing the module n by catching an inept plaintext a is slightly
enlarged.

• Otherwise p is not a prime nor a Carmichael number. Then there is
a small chance that a message cannot be correctly decrypted.

For this reason many implementations of RSA execute a few trial encryp-
tions and decryptions after generating a key pair relying on the probabilistic
Rabin test. But the e↵ect of this additional step simply boils down to a few
additional pseudoprime tests. If something goes wrong, the module is re-
jected.

It is unknown whether this case yet occured in this universe.

47

3.7 The AKS Primality Test

Miller reduced the quest for an e�cient deterministic primality test to
the extended Riemann hypothesis. In August 2002 the three Indian mathe-
maticians Manindra Agrawal, Neeraj Kayal und Nitin Saxena surprised
the scientific community with a complete proof that relied on an astonish-
ingly simple deterministic algorithm. It immediately was baptized “AKS
primality test”. The fastest known version costs O(log(n)6).

Proposition 13 (Basic criterion) Let a, n 2 Z be coprime, n � 2. Then
the following statements are equivalent:

(i) n is prime.

(ii) (X + a)n ⌘ Xn + a (mod n) in the polynomial ring Z[X].

Proof. From the binomial theorem we have

(X + a)n =
nX

i=0

✓
n

i

◆
an�iXi

in Z[X].
“(i) =) (ii)”: If n is prime, then n|

�n
i

�
for i = 1, . . . , n � 1, hence

(X + a)n ⌘ Xn + an (mod n). By Fermat’s theorem an ⌘ a (mod n).
“(ii) =) (i)”: If n is composite, then we choose a prime q|n, and k with

qk|n and qk+1
6 |n. Then q 6= n and

qk 6 |

✓
n

q

◆
=

n · · · (n� q + 1)

1 · · · q
.

Hence the coe�cient of Xq in (X + a)n is 6= 0 in Z/nZ. 3

Remarks

1. Looking at the absolute term in (ii) we see that the basic criterion
generalizes Fermat’s theorem.

2. Consider the ideal qr := (n,Xr
� 1) E Z[X] for r 2 N. If n is prime,

then (X + a)n ⌘ Xn + a (mod qr). This shows:

Corollary 1 If n is prime, then in the polynomial ring Z[X]

(X + a)n ⌘ Xn + a (mod qr)

for all a 2 Z with gcd(a, n) = 1 and all r 2 N.

48

Applying the basic criterion as a primality test in a naive way would
cost about log2 n multiplications of polynomials in Z/nZ[X] using the bi-
nary power algorithm. But these multiplications become more and more
expensive, in the last step we have to multiply two polynomials of degree
about n

2 for an expense of size about n. The corollary bounds the degrees
by r � 1, but its condition is only necessary, not su�cient.

The sticking point of the AKS algorithm is a converse of the corollary
that says that we need to try only “few” values of a, however su�ciently
many, for a suitable fixed r:

Proposition 14 (AKS criterion, H. W. Lenstra’s version) Let n be

an integer � 2. Let r 2 N be coprime with n. Let q := ordr n be the order

of n in the multiplicative group Mr = (Z/rZ)⇥. Furthermore let s � 1 be an

integer with gcd(n, a) = 1 for all a = 1, . . . , s and

✓
'(r) + s� 1

s

◆
� n2d·b

q
'(r)
d c

for each divisor d|'(r)q . Assume

(X + a)n ⌘ Xn + a (mod q) for all a = 1, . . . s

with the ideal q = qr = (n,Xr
� 1) E Z[X]. Then n is a prime power.

We reproduce the proof by D. Bernstein, breaking it up into a series
of lemmas and corollaries.

Lemma 5 For all a = 1, . . . s and all i 2 N

(X + a)n
i
⌘ Xni

+ a (mod q).

Proof. We reason by induction over i. In

(X + a)n = Xn + a+ n · f(X) + (Xr
� 1) · g(X)

we substitute X 7! Xni
in Z[X]:

(X + a)n
i+1

⌘ (Xni
+ a)n = Xni·n + a+ n · f(Xni

) + (Xni·r
� 1) · g(Xni

)

⌘ Xni+1
+ a (mod q),

since Xnir
�1 = (Xr)n

i
�1 = (Xr

�1)(Xr·(ni�1)+ · · ·+Xr+1) is a multiple
of Xr

� 1. 3

Now let p|n be a prime divisor. Claim: n is a power of p.
We enlarge the ideal q = (n,Xr

� 1) E Z[X] to q̂ := (p,Xr
� 1) E Z[X].

Then the identity from Lemma 5 holds also mod q̂, and since we now calcu-
late mod p, we even have:

49

Corollary 2 For all a = 1, . . . s and all i, j 2 N

(X + a)n
ipj

⌘ Xnipj + a (mod q̂).

Let H := hn, pi  Mr be the subgroup generated by the residue classes
n mod r and p mod r. Let

d := #(Mr/H) =
'(r)

#H
.

From q = ordr n |#H we have d | '(r)
q . Hence d satisfies the precondition of

Proposition 14. For the remainder of the proof we fix a complete system of
representants {m1, . . . ,md} ✓ Mr of Mr/H. Corollary 2 then extends to

Corollary 3 For all a = 1, . . . s, all k = 1, . . . , d, and all i, j 2 N

(Xmk + a)n
ipj

⌘ Xmknipj + a (mod q̂).

Proof. We use the same trick as in Lemma 5 and substitute X 7! Xmk in
Z[X]:

(X + a)n
ipj = Xnipj + a+ p · f(X) + (Xr

� 1) · g(X) in Z[X],

(Xmk + a)n
ipj = Xmknipj + a+ p · f(Xmk) + (Xmk·r � 1) · g(Xmk),

and from this the proof is immediate. 3

The products nipj 2 N with 0  i, j  b

q
'(r)
d c are bounded by

1  nipj  n2·b
q

'(r)
d c.

The number of such pairs (i, j) 2 N2 is (b
q

'(r)
d c + 1)2 > '(r)

d , and all

nipj mod r are contained in the subgroup H with #H = '(r)
d . Hence there

are di↵erent (i, j) 6= (h, l) with

nipj ⌘ nhpl (mod r) .

We even have i 6= h—otherwise pj ⌘ pl (mod r), hence p|r. Thus we have
shown the first part of the following lemma:

Lemma 6 There exist i, j, h, l with 0  i, j, h, l  b

q
'(r)
d c and i 6= h such

that for t := nipj, u := nhpl, the congruence t ⌘ u (mod r) is satisfied, and

|t� u|  n2·b
q

'(r)
d c

� 1, as well as

(Xmk + a)t ⌘ (Xmk + a)u (mod q̂)

for all a = 1, . . . , s and all k = 1, . . . d.

50

Proof. The latter congruence follows from Xt = Xu+cr
⌘ Xu (mod Xr

�1),
hence

(Xmk + a)t ⌘ Xmkt + a ⌘ Xmku + a ⌘ (Xmk + a)u (mod q̂),

for all a and k. 3

Now r and n are coprime, and p is a prime divisor of n, thusXr
�1 has no

multiple zeroes in an algebraic closure of Fp. Hence it has r distinct zeroes,
and these are the r-th roots of unity mod p. They form a cyclic group by
Proposition 2. Let ⇣ be a generating element, that is a primitive r-th root
of unity. For one of the irreducible divisors h 2 Fp[X] of Xr

� 1 we have
h(⇣) = 0. Let

K = Fp[⇣] ⇠= Fp[X]/hFp[X] ⇠= Z[X]/ˆ̂q

with the ideal ˆ̂q = (p, h) E Z[X]. Thus we have an ascending chain of ideals

q = (n,Xr
� 1) ,! q̂ = (p,Xr

� 1) ,! ˆ̂q = (p, h) E Z[X]

and a corresponding chain of surjections

Z[X] �! Z[X]/q �! Fp[X]/(Xr
� 1) �! K = Fp[⇣] ⇠= Fp[X]/hFp[X].

Lemma 7 With the notations of Lemma 6 we have in K:

(i) (⇣mk + a)t = (⇣mk + a)u for all a = 1, . . . , s and all k = 1, . . . d.

(ii) If G  K⇥
is the subgroup generated by the ⇣mk + a 6= 0, then gt = gu

for all g 2 Ḡ := G [{0}.

Proof. (i) follows from Lemma 6 using the homomorphism Z[X] �! K,

X 7! ⇣ with kernel ˆ̂q ◆ q̂.
(ii) is a direct consequence from (i). 3

The X + a 2 Fp[X] for a = 1, . . . s are pairwise distinct irreducible
polynomials since p > s by the premises of Proposition 14. Thus also all
products

fe :=
sY

a=1

(X + a)ea for e = (e1, . . . , es) 2 Ns

are distinct in Fp[X]. We consider their images under the map

� : Fp[X] �! Kd,

f 7! (f(⇣m1), . . . , f(⇣md)) .

Lemma 8 The images �(fe) 2 Kd
of the fe with

deg fe =
Ps

a=1 ea  '(r)� 1 are pairwise distinct.

51

Proof. Assume �(fc) = �(fe). By Corollary 3 for k = 1, . . . , d

fc(X
mk)n

ipj =
sY

a=1

(Xmk + a)n
ipjca ⌘

sY

a=1

(Xmknipj + a)ca

= fc(X
mknipj) (mod q̂)

and likewise
fe(X

mk)n
ipj

⌘ fe(X
mknipj) (mod q̂) ,

a forteriori mod ˆ̂q. Applying � to the left-hand sides yields

fc(X
mknipj) ⌘ fe(X

mknipj) (mod ˆ̂q) .

Thus for the di↵erence g := fc � fe 2 Fp[X] we have g(Xmknipj) 2 hFp[X]
for all k = 1, . . . , d. Let b 2 [1 . . . r � 1] be coprime with r, hence represent
an element of Mr. Then b is contained in one of the cosets mkH of Mr/H.
Thus there exist k, i, and j with b ⌘ mknipj (mod r). Hence

g(Xb)� g(Xmknipj) 2 (Xr
� 1)Fp[X] ✓ hFp[X],

hence g(Xb) 2 hFp[X], and g(⇣b) = 0. Thus g has the '(r) di↵erent zeroes
⇣b in K. But the degree of g is < '(r). Hence g = 0, and fc = fe. 3

Corollary 4

#Ḡ �

✓
'(r) + s� 1

s

◆1/d

� |t� u|+ 1.

Proof. There are
�'(r)+s�1

s

�
options for choosing the exponents (e1, . . . , es)

as in Lemma 8. Since all �(fe) 2 Ḡd, we conclude

#Ḡd
�

✓
'(r) + s� 1

s

◆
� n2d·b

q
'(r)
d c

by the premises of Proposition 14, hence

#Ḡ � n2·b
q

'(r)
d c

� |t� u|+ 1

by Lemma 6. 3

Now we can complete the proof of Proposition 14: Since gt = gu for all
g 2 Ḡ ✓ K, the polynomial X |t�u| has more than |t� u| zeroes in K. This
is possible only if t = u. By the definition of t and u (in Lemma 6) n is a
power of p.

This proves Proposition 14. 3

52

3.8 The AKS Algorithm

We describe the algorithm in the version given by Lenstra/Bernstein.
It is not trimmed to uttermost e�ciency but aims at a transparent proof of
polynomiality.

Input

An integer n � 2.
We measure the length of the input by the number ` of bits in the

representation of n to base 2,

` =

(
dlog2 ne, if n is not a power of 2,

k + 1, if n = 2k.

Output

A Boolean value, coded as “COMPOSITE” or “PRIME”.

Step 1

Catch powers of 2:

• If n = 2: output “PRIME”, end.

• (Else) if n is a power of 2: output “COMPOSITE”, end.

We recognize this case by log2 n being an integer.

From now on we may assume that n is not a power of 2, and ` = dlog2 ne.

Step 2

We precompute a big number N 2 N as

N = 2n · (n� 1)(n2
� 1)(n3

� 1) · · · (n4`2
� 1) = 2n ·

4`2Y

i=1

(ni
� 1).

This number is huge, but more importantly:

• The number 4`2 of multiplications is polynomial in `.

• From

N  2n · n
P4`2

i=1 i = 2n · n
4`2(4`2+1)

2  2n · n16`4 ,

we conclude that

k := dlog2Ne  1 + (16`4 + 1) · `

is polynomial in `.

We repeatedly use this integer k in the following. We have N < 2k, and k is
the smallest positive integer with this property.

53

Requirements

We have to find positive integers r and s that satisfy the following require-
ments:

1. r and n are coprime.

2. The integer interval [1, . . . , s] contains no prime divisor of n.

3. For each divisor d | '(r)
q , where q = ordr n,

✓
'(r) + s� 1

s

◆
� n2d·b'(r)

d c.

4. The primality criterion: For all a = 1, . . . , s

(X + a)n ⌘ Xn + a (mod (n,Xr
� 1)).

Step 3

We choose r as the smallest prime that doesn’t divide N . Then r also doesn’t
divide n. In particular requirement 1 is satisfied.

Why can we find r with polynomial cost?
By one of the extensions of the prime number theorem, equation (2), we

have Y

p2k, p prime

p = e#(2k) > 2k > N.

Thus not all primes < 2k divide N .
With costs that are at most quadratic in 2k, and thus polynomial in `,

we get the list of all primes  2k (using Eratosthenes’ sieve).

Step 4

Set s := r. Then requirement 2 is not necessarily satisfied. Hence we run
through the list of primes p < r that is known from step 3:

• If p = n: Output “PRIME”, end.

[This can happen only for “small” n since n grows exponentially with
` but r only polynomially.]

• (Else) If p|n: Output “COMPOSITE”, end.

If we reach this point in the algorithm, then s satisfies requirement 2.

54

Requirement 3

To prove requirement 3 we start with the observation that q := ordr n > 4`2.

Otherwise ni
⌘ 1 (mod r) for some i with 1  i  4`2, hence

r | ni
� 1 |N , contradiction.

Now assume d divides '(r)
q . Then

d 
'(r)

q
<

'(r)

4`2
,

2d · b

r
'(r)

d
c  2d ·

r
'(r)

d
=

p
4d'(r) <

'(r)

`
<

'(r)
2log n

,

n2d·b
q

'(r)
d c < n

'(r)
2logn = 2'(r).

On the other hand '(r) � 2, so
✓
'(r) + s� 1

s

◆
=

✓
'(r) + r � 1

r

◆
=

✓
2'(r)

'(r) + 1

◆
� 2'(r).

Hence requirement 3 is satisfied.

Step 5

Next we check requirement 4,

(X + a)n ⌘ Xn + a (mod (n,Xr
� 1))

in a loop for a = 1, . . . , r. The number of iterations is at most r, thus  2k,
hence polynomial in `. During each iteration we have two binary power
computations, hence a total of at most 4` multiplications, the factors being
polynomials of degree < r—polynomial in `—with coe�cients of size < n,
hence of bitlength polynomial in `.

• If an a violates requirement 4, then output “COMPOSITE”, end.

Otherwise all a satisfy requirement 4, therefore n is a prime power by the
AKS criterion.

Step 6

Finally we must decide whether n is a proper prime power. Since the primes
 r don’t divide n, we only have to check in a loop for t with 1 < t < logr n:

• If t
p
n is integer: Output “COMPOSITE”, end.

The number of iterations is  `, and the test in each single iteration also
takes polynomial cost, if we compute b t

p
nc by a binary search in the interval

[1 . . . n� 1].

55

• If the algorithm reaches this point, output “PRIME”, end.

This completes the proof of:

Theorem 1 The AKS algorithm decides the primality of n with costs that

depend polynomially on log n.

56

