
Chapter 4

The Discrete Logarithm with
Cryptographic Applications

Computing discrete logarithms is believed—like factoring large integers—to
be a hard problem. This serves as basis of many cryptographic procedures.

A useful aspect of most of these procedures is that they rely only on
the group property of the multiplicative groups of the residue class rings
of integers. Therefore they often have an immediate translation to other
groups such as elliptic curves. Should discrete logarithms for residue class
rings happen to be e�ciently computable there remains a chance that the
procedures remain secure for other groups.

57

4.1 The Discrete Logarithm

Let G be a group (multiplicatively written) and a 2 G be an element of
order s (maybe 1). Then the exponential function to base a in G

expa : Z �! G, x 7! ax,

is a group homomorphism (since ax+y = axay) and has period s (since
ax+s = axas = ax if s < 1). By the homomorphy theorem the induced
homomorphism h

Z -expa
hai ✓ G

?
Z/sZ

�
�
�
�✓

h
�
�

�
�

loga

is an isomorphism, hence has an inverse map

loga : hai �! Z/sZ

defined on the cyclic subgroup hai ✓ G, the discrete logarithm to base a
that is an isomorphism of groups. [The case s = 1 fits into this scenario for
sZ = 0 and Z/sZ = Z.]

We apply this to the multiplicative group Mn: For an integer a 2 Z with
gcd(a, n) = 1 the exponential function mod n to base a,

expa : Z �! Mn, x 7! ax mod n,

has period s = ord a|�(n)|'(n). The inverse function

loga : hai �! Z/sZ

is the discrete logarithm mod n to base a.
We know of no e�cient algorithm that computes the discrete logarithm

loga for large s = ord a, or to invert the exponential function—not even a
probabilistic one.

Informal definition: A function f : M �! N is called one-
way function if for “almost all” images y 2 N there is no
e�cient way to compute a pre-image x 2 M with f(x) = y.

This definition can be given a mathematically precise (although
not completely satisfying) formulation in terms of complexity
theory, see Appendix B.

58

Discrete logarithm assumption: The exponential function expa mod n
is a one-way function for “almost all” bases a.

Note that this is an unproven conjecture.

The most important special case is a prime module p � 3, and a primitive
element a 2 [2, . . . , p� 2], i. e., ord a = p� 1.

Z -expa F⇥
p

?
Z/(p� 1)Z

�
�
�
�✓

bij
�
�

�
�

loga

To make the computation of discrete logarithms hard in practice we have
to choose a prime module p of about the same size as an RSA module. Thus
according to the state of the art 1024-bit primes are completely obsolete,
2048-bit primes are safe for short-time applications only.

The book by Shparlinski (see the references for these lecture notes)
contains some lower bounds for the complexity of discrete logarithm com-
putations in various computational models.

59

4.2 Diffie-Hellman Key Exchange

We treat some exemplary applications that provide astonishingly elegant
solutions for seemingly unsolvable problems under the discrete logarithm
assumption.

Imagine A (Alice) and B (Bob) want to exchange a key for a symmetric
cipher. In 1976 Diffie and Hellman proposed the following protocol whose
security relies on the dicrete logarithm assumption:

1. A and B (publicly) agree on a prime p and a primitive element a mod p.

2. A generates a random integer x, computes u = ax mod p, and sends u
to B.

3. B generates a random integer y, computes v = ay mod p, and sends v
to A.

4. A computes k = vx mod p, and B computes k = uy mod p.

Now A and B share a secret k that may be used as key. The fact that A and
B compute the same key k lies in the equation

vx ⌘ axy ⌘ uy (mod p).

An eavesdropper can intercept the values p, a, u, and v. But this doesn’t
enable her to e�ciently compute k, or x, or y.

This protocol realizes a kind of hybrid encryption. A di↵erence with a
“proper” asymmetric cipher concerns the need for synchronization between
A and B, preventing spontaneous messages (for example by e-mail that
follows an asynchroneous protocol).

An attacker who is able to e�ciently compute discrete logarithms is
also able to e�ciently break the Diffie-Hellman protocol. It is unknown
whther the converse also holds.

The British Secret Service CESC knew the procedure already in 1974
but of course kept it secret.

Here is a mathematical model for a somewhat more abstract protocol:

1. A and B (publicly) agree on a set X, an element a 2 X, and a com-
mutative subsemigroup H ✓ Map(X,X).

2. A chooses a random map 'A 2 H, computes u = 'A(a), and sends u
to B.

3. B chooses a random map 'B 2 H, computes v = 'B(a), and sends v
to A.

4. A computes 'A(v), and B computes 'B(u).

60

Then A and B share the secret value

k = 'A(v) = 'A('B(a)) = 'B('A(a)) = 'B(u)

and may use it as key for their secret communication—at least if an attacker
has no method to derive 'A, 'B, or k from the entities X, a, u, and v she
knows or intercepts.

For the adaption of this protocol to elliptic curves an even more abstract
scenario is useful that is visualized by a commutative diagram as follows:

61

4.3 The Man in the Middle

In this section we consider a communication protocol with asymmetric en-
cryption, and note that the same attack works against the Diffie-Hellman
key exchange. The basic problem is that an attacker can plant his own key
into the procedure. In some more detail:

Suppose A = Alice and B = Bob want to exchange messages. First A
sends her public key EA to B, and B sends his public key EB to A.

The attacker E = Eve who only listens cannot use these public data for
eavesdropping. However the attacker M = Mallory, the “man in the middle”
who actively forges messages, intercepts the key exchange, and each time
replaces the intercepted public key by his own key EM . From now on M is
able to monitoring and even counterfeiting the complete communication of
A and B. Figure 4.1 illustrates the attack.

&%
'$

M

&%
'$

A &%
'$

B

��✏�
1

��✏�
2

��✏�
3

��✏�
4

� -

6 6
(“I’m A”, EA) (“I’m B”, EB)

(“I’m B”, EM) (“I’m A”, EM)

Figure 4.1: The man in the middle

There are di↵erent ways to prevent this attack. But all of them make
asymmetric encryption more complex. The usual way is the use of certifi-
cates: The public keys of all participants of a communication network get a
digital signature by a “trusted third party”.

Definition. A certificate is a public key signed by a trusted third party.

Mnemonic. A key exchange can be secure from the man in the middle only

if the partners are mutually authenticated.

Exercise. What information in the Diffie-Hellman protocol is suited to
be used in a certificate?

62

4.4 Secret Communication without Key Exchange

Even without exchanging keys in advance a confidential conversation is pos-
sible. (Note that this protocol also is not secure from the man in the middle.)

An analogy from veryday life illustrates the idea:

• Alice puts her message in a box and locks it with a padlock whose key
is hers and not available to anyone else.

• Of course Bob is unable to open the box. Instead he locks it with
another padlock of his own. He returns the doubly locked box to Alice.

• Alice removes her padlock and returns the box that is locked with
Bob’s padlock only.

• Bob removes his padlock, opens the box, and reads the message.

This cryptographic protocol is called the Massey-Omura scheme or
Shamir’s no-key algorithm. It may be implemented with the discrete expo-
nential function. Its security relies on the discrete logarithm assumption:

The procedure uses a public large prime number p. Alice and Bob
each choose a pair of exponents d and e with ed ⌘ 1 (mod p � 1), hence
ade ⌘ a (mod p) for all integers a 2 Z. Each one keeps both of their expo-
nents secret.

Then Alice sends a message a to Bob according to the following protocol:

✓⌘
◆⇣
A ✓⌘

◆⇣
B

aeA mod p -

aeAeB mod p�

aeAeBdA = aeB mod p -

aeBdB = a mod p

An attacker who is able to compute discrete logarithms is also able to
compute the exponent eB from the intercepted ciphertexts aeA mod p and
aeAeB mod p. From this she computes dB by congruence division and solves
for a.

This is the only known attack. Hence the protocol is secure from Eve as
long as the discrete logarithm assumption holds. To be secure from Mallory
the protocol must be supplemented by an authentication phase.

63

4.5 ElGamal Cipher—Idea

The ElGamal cipher is an asymmetric cipher—or more precisely a hybrid
cipher—that also relies on the complexity of the discrete logarithm.

The basic public parameters are a prime p and an element g 2 [2 . . . p�2].
The order of g in F⇥

p should be high, preferably g should be a primitive
element mod p.

p and g may be shared by all participants but also may be indi-
vidually chosen.

Each participant chooses a random integer

d 2 [2 . . . p� 2]

as private key, und computes

e = gd mod p

as corresponding public key. Computing d from e is computing a discrete
logarithm, hence presumably hard.

The definitioon of the cipher needs one more idea: How to transform a
message a in such a way that it can be reconstructed only with knowledge
of d?

The naive idea of sending ea = gda mod p is useless—knowing
d doesn’t help with decrypting a. Also sending r = ga mod p is
useless—the receiver can compute rd = ea mod p but not a.

The idea is to first generate a message key to be used with a hybrid
procedure:

• Alice chooses a random k 2 [2 . . . p � 2]. As key she will use
K = ek mod p where e is the Bob’s public key, thus Alice can com-
pute K.

• To share the key K with Bob Alice sends the key information

r = gk mod p together with the encrypted message.

• Bob computes rd = gkd = ek = K mod p using his private key d.

As symmetric component of the hybrid encryption the shift cipher in F⇥
p is

used with K as one-time key. So Alice has to generate a new key K for each
plaintext block and to send the corresponding key information, doubling the
length of the message.

Thus, after generating the key K and the key information r:

• the formula for encryption is c = Ka mod p,

• and the message to be sent is (c, r).

Bob computes the key K from r, and then decrypts

• a = K�1c mod p by congruence division.

64

4.6 Computing Discrete Logarithms

The classical algorithm for computing discrete logarithms is the index cal-
culus by Adleman—“index” was Gauss’ denotation of the discrete loga-
rithm.

Let p � 3 be a prime and a be a primitive element for p.
The naive algorithm for computing loga y for y 2 F⇥

p is punished by
exponentially growing costs, as usual. It computes a, a2, a3, . . . in order until
x with ax = y is found. In the mean it needs p

2 � 1 trials, in the worst case,
p� 2 (omitting the trivial value y = 1).

Preliminary Steps

For given p and a we need to execute this precomputation only once.
Let p1 = 2, p2 = 3, . . . , pk be the first k primes.
If we randomly choose an exponent r, then it could happen that ar mod

p—considered as integer 2 Z—has only prime divisors in {p1, . . . , pk}. After
h strokes of luck we have a system of h equations:

ar1 mod p = p↵11
1 · · · p↵1k

k ,

...

arh mod p = p↵h1
1 · · · p↵hk

k .

in Z and a forteriori in Fp. Taking logarithms results in a system of linear
equations over the ring Z/(p� 1)Z for the k unknowns loga pi:

r1 = ↵11 · loga p1 + · · ·+ ↵1k · loga pk,
...

rh = ↵h1 · loga p1 + · · ·+ ↵hk · loga pk.

From Chapter I we know e�cient algorithms for solving it. If h is su�ciently
large—at least h � k—, then we can compute loga p1, . . . , loga pk.

The random search for “strokes of luck” makes the precomputation prob-
abilistic.

Computation

Let y 2 F⇥
p be given. We want to compute loga y.

For a randomly chosen exponent s it could happen that

y · as mod p = p�1
1 · · · p�k

k

in Z. Then we easily compute

loga y = �1 · loga p1 + · · ·+ �k · loga pk � s .

65

This observation reduces the computation of the discrete logarithm of any

element to the computation for the elements of the factor basis (p1, . . . , pk).
This reduction is also probabilistic.

Variants

The presented approach has several variants that result in di↵erent running
times. They vary in the choice of the factor basis—that might be adapted to
y and need not consist of the first primes without gap—and in the strategy
of choosing the exponents r and s.

The fastest known variant uses a number field sieve such as applied for
factoring large integers and has expenses of

⇡ ec·
3
p

log p·(log log p)2 ,

the same order of magnitude as is needed for factoring an integer of the
same size. By the state of the art 1024-bit primes are insecure, and 2048-bit
primes secure only for short-term cryptographic applications.

As an oddity we mention that the “Secure NFS” protocol deployed by
SUN used a 192-bit prime (58 decimal places) even in the 1990s.

Special Primes

There are reasons to choose p as a special prime of the form p = 2p0+1 with
p0 prime:

1. Some algorithms are very fast if p � 1 has only small prime divisors.
This argument is no longer considered as solid since the advantage of
special algorithms over the current versions of the number field sieve
is only small. Moreover the probability of choosing such a “bad” prime
by accident is extremely small.

2. Finding a primitive element is easy, see Section A.9 in the appendix.

66

