
Chapter 6

Equivalences of Basic
Cryptographic Functions

In real world applications the basic cryptographic functions

1. Symmetric ciphers:

(a) bitblock ciphers

(b) bitstream ciphers

2. Asymmetric ciphers

3. Keyless ciphers:

(a) one-way functions

(b) hash functions

4. Random generators:

(a) physical random generators

(b) (algorithmic) (pseudo-) random generators

5. Steganographic procedures

are used for the construction of cryptographic protocols. We’ll see that the
existence of most of them—1a, 1b, 3a, 3b, 4b in suitable variants—is equiv-

alent with the basic problem of theoretic computer science P
?
6= NP, and

thus lacks a proof.
Warning: Most parts of this section are mathematically inexact. State-

ments on complexity are formulated in the naive way and justified by heuris-
tic arguments. Then we sketch the approach to formalizing them by Turing
machines. However this model turns out as insu�cient for cryptology. The
mathematically sound versions of complexity results for cryptologic proce-
dures are given in Appendix B.

78

6.1 One-Way Functions

We continue to use the informal definition from 4.1. An exact approach is
given in Appendix B.5.

Application A natural application of one-way functions is one-way encryp-
tion. This means:

• Everyone can encrypt.

• No one can decrypt.

What is it good for if no one can decrypt? There are several meaningful
applications for one-way functions, in particular for the special case of hash
functions, see 6.2:

• Password management, for instance in Unix or MS Windows. No one
must be able to read the password. But the operating system must be
able to compare an entered password with the one it has in its data
base in encrypted form. (“cryptographic matching”)

• A similar application is pseudonymization: Data of a person should
be combined with data from the same person stored elsewhere or at
other times without revealing the identity of this person.

• Another application is making digital signatures faster, see 6.2.

• The crucial property of asymmetric encryption is that nobody can
derive the private key from the public one. However the direct naive
application of one-way functions doesn’t work, as we saw already for
the ElGamal cipher in 4.5.

Examples of conjectured one-way functions:

1. The discrete exponential function, see 4.1.

2. Consider a bitblock cipher

F : M ⇥K �! C

that resists an attack with known plaintext. A standard trick to
get a one-way function f : K �! C from it works as follows:

f(x) := F (m0, x).

In words: We take a fixed plaintext m0—maybe the all-zero
block—and encrypt it with a key that is exactly the block x to be
one-way encrypted. Inverting this function amounts to an attack
with known plaintext m0 on the cipher F .

79

3. Let n 2 N be a composite module. From 5.2 we know
that—at least in the case where n is the product of two
large prime numbers—computing square roots modn is proba-
bly hard. Hence the squaring map x 7! x2 mod n is a probable
one-way function of the residue class ring Z/nZ. Note that calcu-
lating the inverse map is possible with additional information in
form of the prime factors of n. Such an additional information is
called a “trapdoor”. The function is then called a “trapdoor one-
way function”. This is the crucial security feature of the Rabin
cipher.

4. The same conclusion holds for the RSA function x 7! xe mod n
with an exponent e that is coprime with �(n) (oder '(n)).

80

6.2 Hash Functions

Hash functions are the most important special cases of one-way functions.
They are also known as “message digests” or “cryptographic check sums”.

Definition 1 Let ⌃ be an alphabet and n 2 N be a fixed integer � 1. A
one-way function

h : ⌃⇤
�! ⌃n

is called weak hash function over ⌃.

It maps character strings of arbitrary lengths to character strings of a given
fixed length. (Since ⌃⇤ is infinite we interpret the one-way property as: the
restriction of h to ⌃r is one-way for all su�ciently large r.

Definition 2 A one-way function f : M �! N is called collision free
if there is no e�cient way to find x1, x2 2 M with x1 6= x2, but
f(x1) = f(x2).

This is a kind of “virtual injectivity”. Needless to say that true injective one-
way functions are collision free. If #M > #N , then f cannot be injective,
but nevertheless could be collision free.

Definition 3 A (strong) hash function is a collision free weak hash func-
tion.

For practical applications (mostly with ⌃ = F2) the length n of the
hash values should be as small as possible. On the other hand to exclude
e�cient invertibility, and thus to get cryptographic security, n must be su�-
ciently large. We want a weak hash function to deliver uniformly distributed
values that look statistically random, and to be safe from an exhaustion at-
tack as illustrated in Figure 6.1. Inserting m blanks at will we generate 2m

di↵erent—but optically indistinguishable—versions of a text document. If
m is large enough, with high probability one of these versions will have the
given hash value.

row 1 (add blank) ! 2 di↵erent versions
...

...
row i (add blank) ! 2 di↵erent versions

...
...

row m (add blank) ! 2 di↵erent versions

Figure 6.1: An exhaustion attack: How to fake a document to have a given
hash value by generating 2m di↵erent versions

81

As a consequence n = 80 is just too weak as a lower bound, we’d better
use 128-bit hashes. This is the hash length of the well-known but outdated
functions MD2, MD4, MD5.

But virtually all applications even need collision free hashes. Remember
the birthday paradox, see I.2.6: To exclude collisions with su�cient certainty
we need about twice the bitlength than for the one-way property. So hash
values of 160 bits are just below the limit. The former standard hash func-
tions SHA-1 and RIPEMD use exactly this length. Their use is strongly
discouraged. In the context of AES the hash function SHA-2 with at least
256-bit values was specified, conveniently also denoted as SHA-256 etc. [see
http://csrc.nist.gov/publications/]. The new standard SHA-3 is valid
since 2015.

In fact for the MDx functions there is a systematic way to find collisions
[Dobbertin 1996↵.], also SHA-1 collisions are known (2005).

document a document b
row 1 (add blank) row 1 (add blank)
...

...
...

...
row m (add blank) row m (add blank)

Figure 6.2: A collision attack: How to fake a document to have the same
hash value as another document

Applications

(Strong) hash functions are in use for

• digital signatures: To sign a long message with the private key would
take much time due to the slowness of asymmetric ciphers. The stan-
dard procedure is to sign a hash of the message.

For security we need a collision free hash function. Otherwise the at-
tacker could get a valid signature for an arbitrary document a without
stealing Alice’s private key: He produces an innocently looking docu-
ment b that Alice is glad to sign. Then he fabricates q = 2m variants
a1, . . . , aq and b1, . . . , bq of both documents, for example by inserting
spaces at m di↵erent positions. If he finds a collision h(ai) = h(bj), he
lets Alice sign bj , getting a valid signature for ai too.

• transforming a long, but memorizable passphrase (“Never change a
working % password 24 because you’ll ? forget the nEW one+”) into
an n-bit key (BA8C0C8C1C65364F in hexadecimal notation) for a sym-
metric cipher.

82

6.3 Conversion Tricks

We give heuristic reasons that the following statements (A) to (D) are equiv-
alent, and that each of them implies (E)—for a formal mathematical proof
we don’t have yet the exact definitions.

These implications also have practical relevance for constructing a ba-
sic function given another one. A coarse summary—for the discussion on
regulations of cryptography that pop up from time to time—consists of the
statements

• Who wants to prohibit encryption also must prohibit hash functions
and pseudo-random generators.

• Who wants to make cryptography impossible must prove that
P = NP.

(A) There is a one-way function f : Fn
2 �! Fn

2 .

(Ã) There is a one-way function f̃ : F2n
2 �! Fn

2 .

(B) There is a weak hash function h : F⇤
2 �! Fn

2 .

(C) There is a strong symmetric cipher F : Fn
2 ⇥Fn

2 �! Fn
2 (where “strong”

means secure under a known-plaintext attack).

(D) There is a perfect pseudo-random generator � : Fn
2 �! Fp(n)

2 .

(E) P 6= NP.

Remark 1 Making the statements precise in terms of complexity theory we
have to state (A) – (D) for families of functions that are parametrized
by n.

Remark 2 A pseudo-random generator is perfect if for unknown x 2 Fn
2 ,

given some bits of the output �(x), there is no e�cient way to predict
some more bits of the output, or to compute x. In the specification
p is a polynomial with integer coe�cients—from a “seed” of length n
the generator produces p(n) bits.

We omit reasoning about the implication “(D) =) (E)”.
“(C) =) (D)”: Set �(x) = (s1, . . . , sp(n)/n) with s0 := x and si :=

F (si�1, z) for i � 1, where the key z is a secret constant parameter. Note
the similarity with the OFB mode for bitblock ciphers. For no block si of
the sequence the attacker is able to determine the previous block si�1—
otherwise the cipher wouldn’t be secure. It is not obvious that this property
su�ces to show perfectness, we’ll show this in Chapter IV.

“(D) =) (C)”: Consider the bitstream cipher that uses �(x) as bitstream
and x as key.

83

“(A) =) (C)”: There is a simple approach by E. Backus: Set
F (a, k) = a+ f(k). Under a known-plaintext attack a and c = F (a, k) are
known. Hence also f(k) = c�a is known. So the attack reduces to inverting
f .

[Other approaches: MDC (= Message Digest Cryptography) by P. Gut-
mann, or the Feistel scheme.]

“(C) =) (A)”: See the example in Section 6.1.
“(A) =) (Ã)”: Define f̃ by f̃(x, y) := f(x+y). Assume we can compute

a pre-image (x, y) of c for f̃ . Then this gives also the pre-image x + y of c
for f .

“(Ã) =) (B)”: Pad x 2 F⇤
2 with (at most n � 1) zeroes, giving

(x1, . . . , xr) 2 (Fn
2)

r. Then set

c0 := 0,

ci := f̃(ci�1, xi) for 1 i r,

h(x) := cr.

This defines h : F⇤
2 �! Fn

2 .
Let y 2 Fn

2 be given. Assume the attacker finds a pre-image x 2 (Fn
2)

r

with h(x) = y. Then she also finds a z 2 (Fn
2)

2 with f̃(z) = y, namely
z = (cr�1, xr) (where y = cr in the construction of h).

“(B) =) (A)”: Restricting h to Fn
2 also gives a one-way function.

84

6.4 Physical Complexity

The obvious approach to assessing the complexity of an algorithm is count-
ing the primitive operations that a customary processor executes, or, more
exactly, counting the clock cycles. This would lead to concrete results like:
“Computing . . . costs at least (say) 1080 of the following steps: . . . ”. For
example we could count elementary arithmetical operations (additions, mul-
tiplications, . . .), taking into account the word size of the processor (e. g.
32 bits) and the number of clock cycles for the considered operations. [Note
that this number might not be uniquely defined on a modern CPU with
pipeline architecture.]

For many concrete algorithms statements of this kind are possible, and
often lead to interesting mathematical problems as abundantly demon-
strated by D. Knuth in his books.

Unfortunately no flavour of complexity theory yields results on the mini-

mum number of steps that each algorithm for solving a certain problem must
execute, except for extremely simple problems like evaluating a polynomial
for a certain argument. If we knew results of this kind, we could mathemat-
ically prove the security of cryptographic procedures without recurring to
unproven conjectures or heuristic arguments.

This kind of reasoning could take into account physical bounds that limit
the resources computers in this universe can dispose of. A known estimate
of this kind was proposed by Louis K. Scheffer in sci.crypt:

• Our universe contains at most 1090 elementary particles. This is cer-
tainly an upper bound for the number of available CPUs.

• Passing an elementary particle with the speed of light takes at least
10�35 seconds. This is certainly a lower bound for the time required
by a single operation.

• Our universe has a life span of at most 1018 seconds (⇡ 30⇥109 years).
This is certainly an upper bound for the available time.

Multiplying these bounds together we conclude that at most 10143 ⇡ 2475

operations can be executed in our universe. In particular 500-bit keys are
secure from exhaustion . . .

. . . until such time as computers are built from something other
than matter, and occupy something other than space. (Paul
Ciszek)

Note that this security bound holds for the one algorithm “exhaustion”. It
has no relevance for the security of even a single cryptographic procedure!
(As long as there is no proof that no attack is faster than exhaustion.)

Needless to say that a realistic upper bound is smaller by several orders
of magnitude.

85

For comparision we list some cryptologically relevant quantities:

seconds/year 3⇥ 107

CPU cycles/year (1 GHz CPU) 3.2⇥ 1016

age of our universe (years) 1010

CPU cycles since then (1 GHz) 3.2⇥ 1026

atoms of the earth 1051

electrons in our universe 8.37⇥ 1077

ASCII strings of length 8 (958) 6.6⇥ 1015

binary strings of length 56 (256) 7.2⇥ 1016

binary strings of length 80 1.2⇥ 1024

binary strings of length 128 3.4⇥ 1038

binary strings of length 256 1.2⇥ 1077

primes with 75 decimal places (about 250 bits) 5.2⇥ 1072

86

6.5 Turing Machines

The mathematical results of complexity theory consist almost exclusively of
asymptotic cost estimates, and in almost all cases these estimates are upper
bounds. Complexity theory in its various flavours relies on diverse models
of computation. In this section we shortly sketch the common formalism by
Turing machines.

-input

2 ⌃⇤
M -output

2 ⌃⇤

Here ⌃ (as usual) denotes a finite alphabet. The input is a finite string
on a tape that is infinite in both directions. The Turing machine M can
assume states from a finite set that also contains a state “halt”. Depending
on the state the machine executes certain operations, for instance reads one
character from the tape, changes its state, writes one character to the tape,
moves the reading head by one position to the left or to the right. If M
reaches the state “halt”, then the current string on the tape is the output.

Let L ✓ ⌃⇤ be a language. If M reaches the “halt” state after a finite
number of steps for all inputs x 2 L, then we say that M accepts the
language L. If f : L �! ⌃⇤ is a function, and M reaches “halt” after
finitely many steps for each x 2 L with output f(x), then we say that M
computes f .

With some e↵ort, and not too overwhelming elegance, we can describe
all algorithms by Turing machines. Then by counting the steps we may
express their complexities in the form: for input x the machine M takes ⌧x
steps until reaching “halt”.

Usually we consider “worst case” complexity. Let Ln := L \ ⌃n. Then
the function

tM : N �! N, tM (n) := max{⌧x | x 2 Ln},

is called (time) complexity of the Turing machine M (for L).
The subset P (“polynomial time”) of the set of all functions from L to

⌃⇤ consists of the functions f : L �! ⌃⇤ for which there exists a Turing
machine M and an integer k 2 N such that

(i) M computes f ,

(ii) tM (n) nk for almost all n 2 N.

Remark Equivalent with (ii) is the statemant: There is a polynomial
p 2 N[X] with tM (n) p(n) for all n 2 N.

87

For if there is such a polynomial p = arXr + · · ·+ a0 (with ar 6= 0), then

arn
r

� ar�1n
r�1 + · · ·+ a0 for n � n0,

p(n) 2arn
r for n � n0,

p(n) nr+1 for n � n1 = max{2ar, n0}.

Conversely if tM (n) nk for n � n0, then we choose c 2 N with tM (n) c
for the finitely many n = 0, . . . , n0 � 1. Then tM (n) p(n) for all n 2 N
with p = Xk + c.

Analogously we define the set EXPTIME (“exponential time”): f is in
EXPTIME if there exist a Turing machine M , an integer k 2 N, and real
numbers a, b 2 R with

(i) M computes f ,

(ii) tM (n) a · 2bn
k
for almost all n 2 N.

Obviously P ✓ EXPTIME.

Examples with ⌃ = F2.

1. Assume

L := {(p, z) 2 N2
| p prime ⌘ 3 (mod 4), z 2 M2

p}

is coded as a subset of ⌃⇤ by a suitable binary representation. Let
f(p, z) = the square root of z mod p, likewise coded as an element of
⌃⇤. Then f 2 P by 5.3.

2. Let L = N2 be the set of integers � 2 (binary coded). Let f(x) = be
the smallest prime factor of x. Then f 2 EXPTIME since we can try
all the integers

p
x 2n/2.

Presumably f 62 P.

3. The knapsack problem. Here

L = {(m, a1, . . . , am, N) |m, a1, . . . , am, N 2 N}

with suitable binary encoding,

f(m, a1, . . . , am, N) =

8
><

>:

1, if there is S ✓ {1, . . . ,m}

with
P

i2S ai = N,

0 otherwise.

Then f 2 EXPTIME since we can try all of the 2m subsets
S ✓ {1, . . . ,m}.

Presumably f 62 P.

88

6.6 The Class NP

We say that the Turing machine M computes f : L �! ⌃⇤ nondeter-
ministically if for each x 2 L there is a y 2 ⌃⇤ such that M , given the
concatenation xy of x and y as input, reaches “halt” after finitely many
steps with output f(x).

Example Let ⌃ = F2 and L = {(n, a, x) 2 N3
| n � 2, a, x 2 Mn}. Let

f = loga mod n be the discrete logarithm.

For a given x let y be the logarithm of x—it doesn’t matter in the
definition from where we get the logarithm, in any case it exists. All
the Turing machine M has to do is to check whether ay = x. Then
it writes y to the tape and halts.

General idea A candidate y for the solution is provided, M only does a
check.

Alternative idea An unbounded number of parallel Turing machines
each checks a di↵erent y 2 ⌃⇤.

The set NP (“nondeteministic polynomial time”) is defined as the set
of all functions for which there exists a Turing machine M and an integer
k 2 N with:

(i) M computes f nondeterministically,

(ii) tM (n) nk for almost all n 2 N.
We have the inclusions

P ✓ NP ✓ EXPTIME.

The first of these is trivial, the second is a theorem that we don’t prove here.
The most important unsolved problem of theoretical computer science

is the conjecture

P
?
6= NP.

Likewise unproven is the conjecture

NP
?
6= EXPTIME.

On the other hand the statement

P 6= EXPTIME,

is proven, if only by constructing “artificial” problems. There is no known
“natural” problem proven to be in the di↵erence set.

By the way we cannot make cryptanalysis of a cipher more di�cult than
NP: Exhaustion—that is trying all keys with a known plaintext—is always
possible, and the encryption function must be e�cient, hence in P.

89

Examples

1. If f is the discrete logarithm as above, then f 2 NP.

2. Likewise factoring integers is in NP.

3. Also the knapsack problem is in NP.

We call the function f NP-complete if for each Turing machine M
that computes f (deterministically!) and each function g 2 NP there exists
a Turing machine N that computes g and an integer k 2 N such that

tN (n) tM (n)k for almost all n 2 N.

In other words the complexity of N is at most polynomial in the complexity
of M .

Interpretation NP-complete problems are the maximally complex ones
among those in NP.

It is known that NP-complete problems exist. We refrain from proving this
theorem here.

For instance the knapsack problem is NP-complete, as is the determi-
nation of zeroes of (polynomial) functions p : Fn

2 �! F2. Factoring integers
is presumably not NP-complete.

Should P = NP hold—nobody believes it—, then all functions in NP
would be NP-complete. If not, the following drawing illustrates the relative
situation of the complexity classes:'

&

$

%

EXPTIME'

&

$

%
NP

' $
NP-complete

& %P

90

