A.5 The JACOBI Symbol

Consider the multiplicative group $\mathbb{M}_n = (\mathbb{Z}/n\mathbb{Z})^{\times}$ for a module $n \geq 2$, and its squaring map

$$\mathbf{q} \colon \mathbb{M}_n \longrightarrow \mathbb{M}_n, \quad x \mapsto x^2 \mod n.$$

q is a group homomorphism. The elements in the image of **q** are the **quadratic residues** mod n. An integer x is a quadratic residue mod n if $x \mod n$ is invertible, and there exists an integer u with $u^2 \equiv x \pmod{n}$. Thus the set of quadratic residues is the subset \mathbb{M}_n^2 of the residue class ring $\mathbb{Z}/n\mathbb{Z}$. (This notation is not standard just as little as \mathbb{M}_n . But it spares writing $((\mathbb{Z}/n\mathbb{Z})^{\times})^2$ over and over again.)

Remarks and Examples

- 1. For n = 2 we have $\mathbb{M}_n^2 = \mathbb{M}_n = \{1\}$.
- 2. For $n \ge 3$ we have $-1 \ne 1$ and $(-1)^2 = 1$. Hence **q** is not injective and thus also not surjective. Therefore quadratic non-residues exist.
- 3. Let $n = p \ge 3$ be prime. Then the kernel of **q** exactly consists of the zeroes of the polynomial $X^2 1$ in the field \mathbb{F}_p , hence of $\{\pm 1\}$. We conclude that the number of quadratic residues is $\frac{p-1}{2}$.
- 4. More generally let $n = q = p^e$ be a power of an odd prime p. Then \mathbb{M}_n is cyclic of order $\varphi(q) = q \cdot (1 \frac{1}{p})$ by Proposition 18. Thus 1 has exactly the square roots ± 1 in \mathbb{M}_q , and the number of quadratic residues is $\varphi(q)/2$.
- 5. Let *n* be a product of two different odd primes *p* and *q*. By the chinese remainder theorem the natural map $\mathbb{M}_n \longrightarrow \mathbb{M}_p \times \mathbb{M}_q$ is an isomorphism. Hence \mathbb{M}_n contains exactly four square roots of 1, and $\mathbb{M}_n^2 \leq \mathbb{M}_n$ is a subgroup of index 4.
- 6. In the general case let $n = 2^e p_1^{e_1} \cdots p_r^{e_r}$ be the prime decomposition with different odd primes p_1, \ldots, p_r , and $r \ge 0, e \ge 0, e_1, \ldots, e_r \ge 1$. Proposition 2 tells us the number of square roots of 1 in \mathbb{M}_n :

$$\begin{array}{ll} 2^r, & \text{if } e = 0 \text{ or } 1\\ 2^{r+1}, & \text{if } e = 2,\\ 2^{r+2}, & \text{if } e \geq 3. \end{array}$$

This number is also the order of the kernel of \mathbf{q} , hence the index of \mathbb{M}_n^2 in \mathbb{M}_n .

The naive algorithm, exhaustion, for determing the quadratic residuosity of $a \mod n$ tries $1^2, 2^2, 3^2, \ldots$ until it hits a. A quadratic non-residue always takes $\lfloor \frac{n}{2} \rfloor$ steps, a quadratic residue n/4 steps in the average. Thus the costs grow exponentially with the number $\log n$ of places.

For the case where n is *prime* we'll see better algorithms.

The phenomen that there is no efficient algorithm for *composite* integers n is the basis of many cryptographic constructions, for instance the simplest perfect random generator (BBS, see Part IV).

For a prime module p the LEGENDRE **symbol** indicates quadratic residuosity:

$$\left(\frac{x}{p}\right) = \begin{cases} 1 & \text{if } x \text{ is a quadratic residue,} \\ 0 & \text{if } p | x, \\ -1 & \text{otherwise.} \end{cases}$$

The LEGENDRE symbol defines a homomorphism

$$(\frac{\bullet}{p}): \mathbb{M}_p \longrightarrow \mathbb{M}_p / \mathbb{M}_p^2 \cong \{\pm 1\}$$

In the special case p = 2

$$\left(\frac{x}{2}\right) = \begin{cases} 1 & \text{if } x \text{ is odd,} \\ 0 & \text{if } x \text{ is even.} \end{cases}$$

Proposition 19 (EULER's criterion) Let p be an odd prime. then

$$x^{\frac{p-1}{2}} \equiv (\frac{x}{p}) \pmod{p}$$
 for all x .

Proof. If p|x both sides equal 0. Otherwise $(x^{\frac{p-1}{2}})^2 = x^{p-1} \equiv 1$, hence $x^{\frac{p-1}{2}} \equiv \pm 1$. Let *a* be primitive mod *p*. Then both sides equal -1, hence the assertion holds for x = a. Since both sides represent homomorphisms $\mathbb{F}_p^{\times} \longrightarrow \{\pm 1\}$ the assertion is true for all powers of *a*, hence for all *x* that are no multiples of *p*. \diamond

EULER's criterion yields an efficient algorithm for deciding quadratic residuosity: We have to take $\frac{p-1}{2}$ -th powers in \mathbb{F}_p^{\times} , and this costs at most $2\lfloor \log_2(\frac{p-1}{2}) \rfloor$ multiplications mod p. Taking the cost of modular multiplication into account we get an order of magnitude of $\log_2(p)^3$.

By EULER's criterion -1 is a quadratic residue if and only if $\frac{p-1}{2}$ is even, hence $p \equiv 1 \pmod{4}$. The decision on 2 or 3 is significantly more difficult. However there is an even faster algorithm. It is the subject of the following Section A.6

The LEGENDRE symbol has a natural generalization by the JACOBI symbol (that uses the same notation): For n > 0 with prime decomposition

 $n = p_1 \cdots p_r$ (the p_i not necessarily distinct)

$$\left(\frac{x}{n}\right) := \left(\frac{x}{p_1}\right) \cdots \left(\frac{x}{p_r}\right) \text{ for } x \in \mathbb{M}_n.$$

In particular $(\frac{x}{n}) = 0$ if x and n are not coprime. The supplementing definitions $(\frac{x}{1}) = 1$, $(\frac{x}{n}) = (\frac{x}{-n})$ for n < 0, and $(\frac{x}{0}) = 0$, make the JACOBI symbol a function

$$(\stackrel{\bullet}{-}): \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}$$

with values in $\{0, \pm 1\}$, and multiplicative in numerator and denominator. In particular the JACOBI symbol defines a homomorphism $(\frac{\bullet}{n})$ from \mathbb{M}_n to $\{\pm 1\}$. But it is *not* an indicator of quadratic residuosity. Denoting $\mathbb{M}_n^+ = \ker(\frac{\bullet}{n})$ and $\mathbb{M}_n^- = \mathbb{M}_n - \mathbb{M}_n^+$, in general \mathbb{M}_n^2 is a proper subgroup of \mathbb{M}_n^+ . Its index is given by example 6 above: If the number of square roots of 1 is 2^k with $k \ge 1$, then \mathbb{M}_n^2 has index 2^{k-1} in \mathbb{M}_n^+ .

In any case $\left(\frac{x}{n}\right)$ depends on the residue class $x \mod n$ only. Obviously

$$\left(\frac{x}{2^k}\right) = \begin{cases} 1, & \text{if } x \text{ is odd,} \\ 0, & \text{if } x \text{ is even.} \end{cases}$$