A. 5 The Jacobi Symbol

Consider the multiplicative group $\mathbb{M}_{n}=(\mathbb{Z} / n \mathbb{Z})^{\times}$for a module $n \geq 2$, and its squaring map

$$
\mathbf{q}: \mathbb{M}_{n} \longrightarrow \mathbb{M}_{n}, \quad x \mapsto x^{2} \bmod n
$$

\mathbf{q} is a group homomorphism. The elements in the image of \mathbf{q} are the quadratic residues $\bmod n$. An integer x is a quadratic residue $\bmod n$ if $x \bmod n$ is invertible, and there exists an integer u with $u^{2} \equiv x(\bmod n)$. Thus the set of quadratic residues is the subset \mathbb{M}_{n}^{2} of the residue class ring $\mathbb{Z} / n \mathbb{Z}$. (This notation is not standard just as little as \mathbb{M}_{n}. But it spares writing $\left((\mathbb{Z} / n \mathbb{Z})^{\times}\right)^{2}$ over and over again.)

Remarks and Examples

1. For $n=2$ we have $\mathbb{M}_{n}^{2}=\mathbb{M}_{n}=\{1\}$.
2. For $n \geq 3$ we have $-1 \neq 1$ and $(-1)^{2}=1$. Hence \mathbf{q} is not injective and thus also not surjective. Therefore quadratic non-residues exist.
3. Let $n=p \geq 3$ be prime. Then the kernel of \mathbf{q} exactly consists of the zeroes of the polynomial $X^{2}-1$ in the field \mathbb{F}_{p}, hence of $\{ \pm 1\}$. We conclude that the number of quadratic residues is $\frac{p-1}{2}$.
4. More generally let $n=q=p^{e}$ be a power of an odd prime p. Then \mathbb{M}_{n} is cyclic of order $\varphi(q)=q \cdot\left(1-\frac{1}{p}\right)$ by Proposition 18 . Thus 1 has exactly the square roots ± 1 in \mathbb{M}_{q}, and the number of quadratic residues is $\varphi(q) / 2$.
5. Let n be a product of two different odd primes p and q. By the chinese remainder theorem the natural map $\mathbb{M}_{n} \longrightarrow \mathbb{M}_{p} \times \mathbb{M}_{q}$ is an isomorphism. Hence \mathbb{M}_{n} contains exactly four square roots of 1 , and $\mathbb{M}_{n}^{2} \leq \mathbb{M}_{n}$ is a subgroup of index 4.
6. In the general case let $n=2^{e} p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ be the prime decomposition with different odd primes p_{1}, \ldots, p_{r}, and $r \geq 0, e \geq 0, e_{1}, \ldots, e_{r} \geq 1$. Proposition 2 tells us the number of square roots of 1 in \mathbb{M}_{n} :

$$
\begin{array}{ll}
2^{r}, & \text { if } e=0 \text { or } 1, \\
2^{r+1}, & \text { if } e=2, \\
2^{r+2}, & \text { if } e \geq 3
\end{array}
$$

This number is also the order of the kernel of \mathbf{q}, hence the index of \mathbb{M}_{n}^{2} in \mathbb{M}_{n}.

The naive algorithm, exhaustion, for determing the quadratic residuosity of $a \bmod n$ tries $1^{2}, 2^{2}, 3^{2}, \ldots$ until it hits a. A quadratic non-residue always takes $\left\lfloor\frac{n}{2}\right\rfloor$ steps, a quadratic residue $n / 4$ steps in the average. Thus the costs grow exponentially with the number $\log n$ of places.

For the case where n is prime we'll see better algorithms.
The phenomen that there is no efficient algorithm for composite integers n is the basis of many cryptographic constructions, for instance the simplest perfect random generator (BBS, see Part IV).

For a prime module p the LEGENDRE symbol indicates quadratic residuosity:

$$
\left(\frac{x}{p}\right)= \begin{cases}1 & \text { if } x \text { is a quadratic residue } \\ 0 & \text { if } p \mid x \\ -1 & \text { otherwise }\end{cases}
$$

The Legendre symbol defines a homomorphism

$$
\left(\frac{\bullet}{p}\right): \mathbb{M}_{p} \longrightarrow \mathbb{M}_{p} / \mathbb{M}_{p}^{2} \cong\{ \pm 1\}
$$

In the special case $p=2$

$$
\left(\frac{x}{2}\right)= \begin{cases}1 & \text { if } x \text { is odd } \\ 0 & \text { if } x \text { is even }\end{cases}
$$

Proposition 19 (EULER's criterion) Let p be an odd prime. then

$$
x^{\frac{p-1}{2}} \equiv\left(\frac{x}{p}\right) \quad(\bmod p) \quad \text { for all } x
$$

Proof. If $p \mid x$ both sides equal 0 . Otherwise $\left(x^{\frac{p-1}{2}}\right)^{2}=x^{p-1} \equiv 1$, hence $x^{\frac{p-1}{2}} \equiv \pm 1$. Let a be primitive $\bmod p$. Then both sides equal -1 , hence the assertion holds for $x=a$. Since both sides represent homomorphisms $\mathbb{F}_{p}^{\times} \longrightarrow\{ \pm 1\}$ the assertion is true for all powers of a, hence for all x that are no multiples of p.

EULER's criterion yields an efficient algorithm for deciding quadratic residuosity: We have to take $\frac{p-1}{2}$-th powers in \mathbb{F}_{p}^{\times}, and this costs at most $2\left\lfloor\log _{2}\left(\frac{p-1}{2}\right)\right\rfloor$ multiplications $\bmod p$. Taking the cost of modular multiplication into account we get an order of magnitude of $\log _{2}(p)^{3}$.

By EULER's criterion -1 is a quadratic residue if and only if $\frac{p-1}{2}$ is even, hence $p \equiv 1(\bmod 4)$. The decision on 2 or 3 is significantly more difficult. However there is an even faster algorithm. It is the subject of the following Section A.6.

The LEGENDRE symbol has a natural generalization by the JACOBI symbol (that uses the same notation): For $n>0$ with prime decomposition
$n=p_{1} \cdots p_{r}$ (the p_{i} not necessarily distinct)

$$
\left(\frac{x}{n}\right):=\left(\frac{x}{p_{1}}\right) \cdots\left(\frac{x}{p_{r}}\right) \quad \text { for } x \in \mathbb{M}_{n}
$$

In particular $\left(\frac{x}{n}\right)=0$ if x and n are not coprime. The supplementing definitions $\left(\frac{x}{1}\right)=1,\left(\frac{x}{n}\right)=\left(\frac{x}{-n}\right)$ for $n<0$, and $\left(\frac{x}{0}\right)=0$, make the JACOBI symbol a function

$$
\left(\frac{\bullet}{\bullet}\right): \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}
$$

with values in $\{0, \pm 1\}$, and multiplicative in numerator and denominator. In particular the JACOBI symbol defines a homomorphism ($\frac{\bullet}{n}$) from \mathbb{M}_{n} to $\{ \pm 1\}$. But it is not an indicator of quadratic residuosity. Denoting $\mathbb{M}_{n}^{+}=\operatorname{ker}\left(\frac{\bullet}{n}\right)$ and $\mathbb{M}_{n}^{-}=\mathbb{M}_{n}-\mathbb{M}_{n}^{+}$, in general \mathbb{M}_{n}^{2} is a proper subgroup of \mathbb{M}_{n}^{+}. Its index is given by example 6 above: If the number of square roots of 1 is 2^{k} with $k \geq 1$, then \mathbb{M}_{n}^{2} has index 2^{k-1} in \mathbb{M}_{n}^{+}.

In any case $\left(\frac{x}{n}\right)$ depends on the residue class $x \bmod n$ only. Obviously

$$
\left(\frac{x}{2^{k}}\right)= \begin{cases}1, & \text { if } x \text { is odd } \\ 0, & \text { if } x \text { is even }\end{cases}
$$

