A. 1 Primitive Elements for Powers of 2

The cases $n=2$ or 4 are trivial: \mathbb{M}_{2} is the one-element group. \mathbb{M}_{4} is cyclic of order 2 , thus $3 \equiv-1(\bmod 4)$ is primitive.

From now on we assume $n=2^{e}$ with $e \geq 3$. Note that \mathbb{M}_{n} consists of the residue classes of the odd integers, hence $\varphi(n)=2^{e-1}$.

Lemma 10 Let $n=2^{e}$ with $e \geq 2$.
(i) If a is odd, then

$$
a^{2^{s}} \equiv 1 \quad\left(\bmod 2^{s+2}\right) \quad \text { for all } s \geq 1
$$

(ii) If $a \equiv 3(\bmod 4)$, then $n \mid 1+a+\cdots+a^{n / 2-1}$.

Proof. (i) First we prove the statement for $s=1$. In the case $a=4 q+1$ we have $a^{2}=16 q^{2}+8 q+1$. In the case $a=4 q+3$ we have $a^{2}=16 q^{2}+24 q+9$, hence $a^{2} \equiv 1(\bmod 8)$.

The assertion for general s follows by induction:

$$
a^{2^{s-1}}=1+t 2^{s+1} \Longrightarrow a^{2^{s}}=\left(a^{2^{s-1}}\right)^{2}=1+2 t 2^{s+1}+t^{2} 2^{2 s+2} .
$$

(ii) By (i) we have $2 n=2^{e+1} \mid a^{n / 2}-1$. Since only the first power of 2 divides $a-1$ we conclude

$$
n=2^{e} \left\lvert\, \frac{a^{n / 2}-1}{a-1}\right.
$$

as claimed.

Lemma 11 Let p a prime and e an integer with $p^{e} \geq 3$. Let p^{e} be the largest power of p that divides $x-1$. Then p^{e+1} is the largest power of p that divides $x^{p}-1$.

Proof. We have $x=1+t p^{e}$ with an integer t that is not a multiple of p. The binomial theorem yields

$$
x^{p}=1+\sum_{k=1}^{p}\binom{p}{k} t^{k} p^{k e} .
$$

Since p divides all binomial coefficients $\binom{p}{k}=\frac{p!}{k!(p-k)!}$ for $k=1, \ldots, p-1$ we can factor out p^{e+1} from the sum:

$$
x^{p}=1+t p^{e+1} s
$$

with some integer s. Hence p^{e+1} divides $x^{p}-1$. It remains to show that s is not a multiple of p. We take a closer look at s :

$$
\begin{aligned}
s & =\sum_{k=1}^{p} \frac{1}{p}\binom{p}{k} \cdot t^{k-1} p^{e(k-1)} \\
& =1+\frac{1}{p}\binom{p}{2} \cdot t p^{e}+\cdots+\frac{1}{p} \cdot t^{p-1} p^{e(p-1)} .
\end{aligned}
$$

Since $p^{e} \geq 3$ we have $e(p-1) \geq 2$, hence $s \equiv 1(\bmod p)$.
Lemma 10 implies

$$
a^{2^{e-2}} \equiv 1 \quad(\bmod n) \quad \text { for all odd } a
$$

Hence the exponent $\lambda(n) \leq 2^{e-2}$, and \mathbb{M}_{n} is not cyclic. More exactly:
Proposition 17 Let $n=2^{e}$ with $e \geq 3$. Then:
(i) The order of -1 in $G=\mathbb{M}_{n}$ is 2 , the order of 5 is 2^{e-2}, and G is the direct product of the cyclic groups generated by -1 and 5 .
(ii) If $e \geq 4$, then the primitive elements $\bmod n$ are the integers $a \equiv 3,5(\bmod 8)$. Their number is $n / 4$.

Proof. (i) Since ord $5 \mid 2^{e}$ and ord $5 \leq 2^{e-2}$, we conclude that ord 5 is a power of 2 and $\leq 2^{e-2}$.

Now $\overline{2^{2}}$ is the largest power of 2 in $5-1$, thus 2^{3} is the largest power of 2 in $5^{2}-1$ (by Lemma 11). Successively we conclude that 2^{e-1} is the largest power of 2 in $5^{2^{e-3}}-1$. Hence the 2^{e-2}-th power of 5 is the smallest one $\equiv 1$ $\left(\bmod 2^{e}\right)$.

The product of the two subgroups is direct since -1 is not a power of 5 otherwise $5^{k} \equiv-1(\bmod n)$, and, because of $e \geq 2$, also $5^{k} \equiv-1(\bmod 4)$, contradicting $5 \equiv 1(\bmod 4)$.

The direct product is all of G since its order is $2 \cdot 2^{e-2}$.
(ii) By (i) each element $a \in G$ has a unique expression of the form $a=(-1)^{r} 5^{s}$ with $r=0$ or 1 , and $0 \leq s<2^{e-2}$. Hence a^{k} equals 1 in $\mathbb{Z} / n \mathbb{Z}$ if and only if $k r$ is even and $k s$ is a multiple of 2^{e-2}. In particular then k is even. If s is even, then the condition is satisfied for some $k<2^{e-2}$. Thus a is primitive if and only if s is odd, or equivalently $a \equiv \pm 5(\bmod 8)$.

As a corollary we have $\lambda\left(2^{e}\right)=2^{e-2}$ for $e \geq 4$, and $\lambda(8)=2$.

