A.3 **Primitive Elements for Prime Powers**

For prime powers we need one more lemma.

Lemma 13 Let p be prime ≥ 3 , k, an integer, and $d \geq 0$. Then

 $(1+kp)^{p^d} \equiv 1+kp^{d+1} \pmod{p^{d+2}}.$

Proof. For d = 0 the statement is trivial. For $d \ge 1$ we reason by induction: Assume

$$(1+kp)^{p^{d-1}} = 1+kp^d + rp^{d+1} = 1+(k+rp)p^d.$$

Then

$$(1+kp)^{p^d} = (1+(k+rp)p^d)^p \equiv 1+p \cdot (k+rp) \cdot p^d \equiv 1+kp^{d+1} \pmod{p^{d+2}},$$

since $d+2 \leq 2d+1$ and $p \geq 3$. \diamond

Proposition 18 Let p be prime ≥ 3 , e, an exponent ≥ 2 , and a be primitive mod p. Then:

- (i) a generates the group \mathbb{M}_{p^e} if and only if $a^{p-1} \mod p^2 \neq 1$.
- (ii) a or a + p generates \mathbb{M}_{p^e} .
- (iii) \mathbb{M}_{p^e} is cyclic, and $\lambda(p^e) = \varphi(p^e) = p^{e-1}(p-1)$.

Proof. (i) Let t be the multiplicative order of $a \mod p^e$, necessarily a multiple of the order of $a \mod p$, hence of p - 1. On the other hand t divides $\varphi(p^e) = p^{e-1}(p-1)$. Hence $t = p^d(p-1)$ with $0 \le d \le e-1$. Choose k such that $a^{p-1} = 1 + kp$. Then by Lemma 13

$$(a^{p-1})^{p^{e-2}} \equiv 1 + kp^{e-1} \equiv 1 \pmod{p^e} \iff p|k \iff a^{p-1} \equiv 1 \pmod{p^2}.$$

This is *not* the case if and only if d = e - 1.

(ii) Assume a doesn't generate \mathbb{M}_{p^e} . Then $a^{p-1} \equiv 1 \pmod{p^2}$, hence

$$(a+p)^{p-1} \equiv a^{p-1} + (p-1)a^{p-2}p \equiv 1 - a^{p-2} \pmod{p^2},$$

and this is not $\equiv 1 \pmod{p^2}$.

(iii) follows immediately from (ii). \diamond

We immediately get an analogous result for modules that are twice a prime power:

Corollary 1 Let $q = p^e$ be a power of a prime $p \ge 3$. Then:

- (i) The multiplicative group M_{2q} is canonically isomorphic with M_q, hence cyclic.
- (ii) If a is a primitive element mod q, then a is primitive mod 2q for odd
 a, and a + q is primitive mod 2q for even a.
- (iii) $\lambda(2p^e) = p^{e-1}(p-1).$

Proof. (i) Since q and 2 are coprime, and \mathbb{M}_2 is the trivial group, by the chinese remainder theorem $\mathbb{M}_{2q} \cong \mathbb{M}_2 \times \mathbb{M}_q \cong \mathbb{M}_q$. This map is explicitly given by $a \mod 2q \mapsto a \mod q$.

(ii) Exactly one of a and a + q is odd, hence coprime with 2q. Thus the inverse isomorphism is

$$a \mapsto \begin{cases} a, & \text{if } a \text{ is odd,} \\ a+q, & \text{if } a \text{ is even.} \end{cases}$$

(iii) obvious. \diamond