A. 3 Primitive Elements for Prime Powers

For prime powers we need one more lemma.
Lemma 13 Let p be prime $\geq 3, k$, an integer, and $d \geq 0$. Then

$$
(1+k p)^{p^{d}} \equiv 1+k p^{d+1} \quad\left(\bmod p^{d+2}\right)
$$

Proof. For $d=0$ the statement is trivial. For $d \geq 1$ we reason by induction: Assume

$$
(1+k p)^{p^{d-1}}=1+k p^{d}+r p^{d+1}=1+(k+r p) p^{d}
$$

Then
$(1+k p)^{p^{d}}=\left(1+(k+r p) p^{d}\right)^{p} \equiv 1+p \cdot(k+r p) \cdot p^{d} \equiv 1+k p^{d+1} \quad\left(\bmod p^{d+2}\right)$, since $d+2 \leq 2 d+1$ and $p \geq 3$.

Proposition 18 Let p be prime ≥ 3, e, an exponent ≥ 2, and a be primitive $\bmod p$. Then:
(i) a generates the group $\mathbb{M}_{p^{e}}$ if and only if $a^{p-1} \bmod p^{2} \neq 1$.
(ii) a or $a+p$ generates $\mathbb{M}_{p^{e}}$.
(iii) $\mathbb{M}_{p^{e}}$ is cyclic, and $\lambda\left(p^{e}\right)=\varphi\left(p^{e}\right)=p^{e-1}(p-1)$.

Proof. (i) Let t be the multiplicative order of $a \bmod p^{e}$, necessarily a multiple of the order of $a \bmod p$, hence of $p-1$. On the other hand t divides $\varphi\left(p^{e}\right)=p^{e-1}(p-1)$. Hence $t=p^{d}(p-1)$ with $0 \leq d \leq e-1$.

Choose k such that $a^{p-1}=1+k p$. Then by Lemma 13

$$
\left(a^{p-1}\right)^{p^{e-2}} \equiv 1+k p^{e-1} \equiv 1 \quad\left(\bmod p^{e}\right) \Longleftrightarrow p \mid k \Longleftrightarrow a^{p-1} \equiv 1 \quad\left(\bmod p^{2}\right)
$$

This is not the case if and only if $d=e-1$.
(ii) Assume a doesn't generate $\mathbb{M}_{p^{e}}$. Then $a^{p-1} \equiv 1\left(\bmod p^{2}\right)$, hence

$$
(a+p)^{p-1} \equiv a^{p-1}+(p-1) a^{p-2} p \equiv 1-a^{p-2} \quad\left(\bmod p^{2}\right)
$$

and this is not $\equiv 1\left(\bmod p^{2}\right)$.
(iii) follows immediately from (ii). \diamond

We immediately get an analogous result for modules that are twice a prime power:

Corollary 1 Let $q=p^{e}$ be a power of a prime $p \geq 3$. Then:
(i) The multiplicative group $\mathbb{M}_{2 q}$ is canonically isomorphic with \mathbb{M}_{q}, hence cyclic.
(ii) If a is a primitive element $\bmod q$, then a is primitive $\bmod 2 q$ for odd a, and $a+q$ is primitive $\bmod 2 q$ for even a.
(iii) $\lambda\left(2 p^{e}\right)=p^{e-1}(p-1)$.

Proof. (i) Since q and 2 are coprime, and \mathbb{M}_{2} is the trivial group, by the chinese remainder theorem $\mathbb{M}_{2 q} \cong \mathbb{M}_{2} \times \mathbb{M}_{q} \cong \mathbb{M}_{q}$. This map is explicitely given by $a \bmod 2 q \mapsto a \bmod q$.
(ii) Exactly one of a and $a+q$ is odd, hence coprime with $2 q$. Thus the inverse isomorphism is

$$
a \mapsto \begin{cases}a, & \text { if } a \text { is odd } \\ a+q, & \text { if } a \text { is even }\end{cases}
$$

(iii) obvious.

