A. 2 Primitive Elements for Prime Modules

More difficult (and mathematically more interesting) is the search for primitive elements for a prime module. Since the multiplicative group is cyclic it suffices to find one primitive element-all the other ones are powers of it with exponents coprime with $p-1$. In particular there are exactly $\varphi(p-1)$ primitive elements $\bmod p$. Usually the primitive elements for any module n where \mathbb{M}_{n} is cyclic are also called primitive roots $\bmod n$.

The simplest, but not best, method is trying $x=2,3,4, \ldots$, and testing if $x^{d} \neq 1$ for each proper divisor d of $p-1$. We need not to test all divisors:

Lemma 12 Let p be a prime ≥ 5. An integer x is primitive $\bmod p$, if and only if $x^{(p-1) / q} \neq 1$ in \mathbb{F}_{p} for each prime factor q of $p-1$.

Proof. The order of x divides $p-1$, and each proper divisor of $p-1$ divides at least one of the quotients $\frac{p-1}{q}$. \diamond

To apply this criterion we need the prime decomposition of $p-1$. Then the test is efficient: The number of prime factors is $\leq \log _{2}(p-1)$, and for each of them we apply the binary power algorithm.

Example For $p=41$ we have $p-1=40=2^{3} \cdot 5$. Hence x is primitive if and only if $x^{20} \neq 1$ and $x^{8} \neq 1$. The test runs through the following steps in \mathbb{F}_{41} :

$$
\begin{aligned}
& x=2: \quad x^{2}=4, \quad x^{4}=16, \quad\left\{\begin{array}{l}
x^{8}=10, \\
x^{20}=x^{8} x^{8} x^{4}=1 .
\end{array}\right. \\
& x=3: \quad x^{2}=9, \quad x^{4}=81, \quad x^{4}=-1, \quad x^{8}=1 . \\
& x=4: \quad x=2^{2} \text {, hence } \quad x^{20}=1 \text {. } \\
& x=5: \quad x^{2}=25, \quad x^{4}=10 \quad\left\{\begin{array}{l}
x^{8}=18, \\
x^{20}=x^{8} x^{8} x^{4}=1 .
\end{array}\right. \\
& x=6: \quad x^{2}=36, \quad x^{4}=25 \quad\left\{\begin{array}{l}
x^{8}=10, \\
x^{20}=x^{8} x^{8} x^{4}=-1 .
\end{array}\right.
\end{aligned}
$$

Hence 6 is a primitive root for $p=41$.
The obvious question is how many integers must we try to find a primitive root? The quantity

$$
\alpha(p):=\min \{x \in \mathbb{N} \mid x \text { is primitive for } p\}
$$

measures the complexity of complete search (but neglects the complexity of the proof of primitivity). It is known that the the function α is not bounded. In 1962 Burgess proved

$$
\alpha(p)=\mathrm{O}(\sqrt[6]{p})
$$

Assuming ERH this exponential bound may be lessened to a polynomial one. The best known result is by Shoup 1990:

$$
\alpha(p)=\mathrm{O}\left(\log (p)^{6}(1+\log \log (p))^{4}\right) .
$$

Even completely simple questions are yet unanswered:

- Is 2 primitive for infinitely many primes?
- Is 10 primitive for infinitely many primes? (Gauss' conjecture)

Artin more generally conjectured: If $a \in \mathbb{N}$, and a is not an integer square (i. e. $a \neq 0,1,4,9, \ldots$), then a is primitive for infinitely many primes.

Some relevant references:

- D. R. Heath-Brown: Artin's conjecture for primitive roots. Quart. J. Math. Oxford 37 (1986), 27-38.
- M. Ram Murty: Artin's conjecture for primitive roots. Math. Intelligencer 10 (1988), 59-67.
- V. Shoup: Searching for primitive roots in finite fields. Proc. 22nd STOC 1990, 546-554.
- Murata: On the magnitude of the least prime primitive root. J. Number Theory 37 (1991), 47-66.

