
A.6 Quadratic Reciprocity

Quadratic reciprocity provides a very convenient method of computing the
Jacobi (or Legendre) symbol and thereby deciding quadratic residuosity.
It relies on the following two propositions and a lemma that helps to reduce
composite modules to prime modules.

Lemma 15 Let s, t 2 Z be odd. Then

(i) s�1
2 + t�1

2 ⌘
st�1
2 (mod 2),

(ii) s2�1
8 + t2�1

8 ⌘
s2t2�1

8 (mod 2).

Proof. Assume s = 2k + 1 and t = 2l + 1. Then st = 4kl + 2k + 2l + 1,

st� 1

2
= 2kl + k + l ⌘ k + l =

s� 1

2
+

t� 1

2
.

Moreover
s2 = 4 · (k2 + k) + 1, t2 = 4 · (l2 + l) + 1,

s2t2 = 16 · . . .+ 4 · (k2 + k + l2 + l) + 1,

s2t2 � 1

8
= 2 · . . .+

k2 + k + l2 + l

2
,

and this proves the assertion. 3

Proposition 20 Let n be odd. Then

(i) (�1
n ) = (�1)

n�1
2 ,

(ii) ( 2n) = (�1)
n2�1

8

Proof. The lemma reduces the assertions to the case n = p prime.
(i) is a direct consequence of Euler’s criterion, Proposition 19.
(ii) We have

(�1)k · k ⌘

⇢
k, if k is even,

p� k, if k is odd,

p�1
2Y

k=1

(�1)k · k ⌘ 2 · 4 · · · (p� 1) = 2
p�1
2 · (

p� 1

2
)!.
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Om the other hand

p�1
2Y

k=1

(�1)k · k = (
p� 1

2
)! · (�1)

p2�1
8 , since

p�1
2X

k=1

k =
(p� 1)(p+ 1)

2 · 2 · 2
.

Now (p�1
2 )! is a product of positive integers < p, thus not a multiple of

p. Hence we may divide by it. Then from the two equations and Euler’s
criterion we get

(�1)
p2�1

8 ⌘ 2
p�1
2 ⌘ (

2

p
) (mod p) .

Since p � 3 this congruence implies equality. 3

In particular 2 is a quadratic residue modulo the prime p if and only if
(p2 � 1)/8 is even, or p2 ⌘ 1 (mod 16), or p ⌘ 1 or 7 (mod 8).

Theorem 3 (Law of Quadratic Reciprocity) Let m and n be two di↵erent

odd coprime positive integers. Then

(
m

n
)(

n

m
) = (�1)

m�1
2

n�1
2 .

Here is a somewhat more comprehensible formula:

(
m

n
) =

(
�( n

m) if m ⌘ n ⌘ 3 (mod 4),

( n
m) else.

The proof is in the next section. First we illustrate the computation with
an example:

Is 7 a quadratic residue mod107? No, as the following computation
shows:

(
7

107
) = �(

107

7
) = �(

2

7
) = �1.

Likewise 7 is not a quadratic residue mod 11:

(
7

11
) = �(

11

7
) = �(

4

7
) = �(

2

7
)(
2

7
) = �1.

Hence 7 is a quadratic non-residue also mod 1177 = 11 ·107. But ( 7
1177) = 1.

From the law of quadratic reciprocity we derive the following algorithm:
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Procedure JacobiSymbol

Input parameters:
m, n = two integers.

Output parameter:
jac = (mn ).

Instructions:
If n = 0 output jac = 0 end
If m = 0 output jac = 0 end
If gcd(m,n) > 1 output jac = 0 end
[Now m,n 6= 0 are coprime, so jac = ±1.]
jac = 1.
If n < 0 replace n by �n.
If n is even divide n by the maximum possible power 2k.
If m < 0

replace m by �m,
if n ⌘ 3 (mod 4) replace jac by �jac.

[From now on m and n are coprime, and n is positive and odd.]
[In the last step m = 0 and n = 1 may occur.]
If m > n replace m by m mod n.
While n > 1:

If m is even:
Divide m by the maximum possible power 2k,
if (k is odd and n ⌘ ±3 (mod 8)) replace jac by �jac.

[Now m and n are odd and coprime, 0 < m < n.]
[The law of quadratic reciprocity applies.]
If (m ⌘ 3 (mod 4) and n ⌘ 3 (mod 4))

replace jac by �jac.
Set d = m, m = n mod m, n = d.

The analysis of this algorithm resembles the analysis of the Euclidean
algorithm: We need at most 5 · log(m) steps, each one essentially consisting
of one integer division. Since the size of the operands rapidly decreases, the
total cost amounts to O(log2(m)2). This is significantly faster than applying
Euler’s criterion.
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