A. 6 Quadratic Reciprocity

Quadratic reciprocity provides a very convenient method of computing the Jacobi (or LEGENDRE) symbol and thereby deciding quadratic residuosity. It relies on the following two propositions and a lemma that helps to reduce composite modules to prime modules.

Lemma 15 Let $s, t \in \mathbb{Z}$ be odd. Then
(i) $\frac{s-1}{2}+\frac{t-1}{2} \equiv \frac{s t-1}{2}(\bmod 2)$,
(ii) $\frac{s^{2}-1}{8}+\frac{t^{2}-1}{8} \equiv \frac{s^{2} t^{2}-1}{8}(\bmod 2)$.

Proof. Assume $s=2 k+1$ and $t=2 l+1$. Then $s t=4 k l+2 k+2 l+1$,

$$
\frac{s t-1}{2}=2 k l+k+l \equiv k+l=\frac{s-1}{2}+\frac{t-1}{2}
$$

Moreover

$$
\begin{gathered}
s^{2}=4 \cdot\left(k^{2}+k\right)+1, \quad t^{2}=4 \cdot\left(l^{2}+l\right)+1, \\
s^{2} t^{2}=16 \cdot \ldots+4 \cdot\left(k^{2}+k+l^{2}+l\right)+1, \\
\frac{s^{2} t^{2}-1}{8}=2 \cdot \ldots+\frac{k^{2}+k+l^{2}+l}{2},
\end{gathered}
$$

and this proves the assertion. \diamond

Proposition 20 Let n be odd. Then
(i) $\left(\frac{-1}{n}\right)=(-1)^{\frac{n-1}{2}}$,
(ii) $\left(\frac{2}{n}\right)=(-1)^{\frac{n^{2}-1}{8}}$

Proof. The lemma reduces the assertions to the case $n=p$ prime.
(i) is a direct consequence of EULER's criterion, Proposition 19 .
(ii) We have

$$
\begin{gathered}
(-1)^{k} \cdot k \equiv\left\{\begin{array}{cl}
k, & \text { if } k \text { is even, } \\
p-k, & \text { if } k \text { is odd }
\end{array}\right. \\
\prod_{k=1}^{\frac{p-1}{2}}(-1)^{k} \cdot k \equiv 2 \cdot 4 \cdots(p-1)=2^{\frac{p-1}{2}} \cdot\left(\frac{p-1}{2}\right)!
\end{gathered}
$$

Om the other hand

$$
\prod_{k=1}^{\frac{p-1}{2}}(-1)^{k} \cdot k=\left(\frac{p-1}{2}\right)!\cdot(-1)^{\frac{p^{2}-1}{8}}, \quad \text { since } \sum_{k=1}^{\frac{p-1}{2}} k=\frac{(p-1)(p+1)}{2 \cdot 2 \cdot 2}
$$

Now $\left(\frac{p-1}{2}\right)$! is a product of positive integers $<p$, thus not a multiple of p. Hence we may divide by it. Then from the two equations and Euler's criterion we get

$$
(-1)^{\frac{p^{2}-1}{8}} \equiv 2^{\frac{p-1}{2}} \equiv\left(\frac{2}{p}\right) \quad(\bmod p)
$$

Since $p \geq 3$ this congruence implies equality.
In particular 2 is a quadratic residue modulo the prime p if and only if $\left(p^{2}-1\right) / 8$ is even, or $p^{2} \equiv 1(\bmod 16)$, or $p \equiv 1$ or $7(\bmod 8)$.

Theorem 3 (Law of Quadratic Reciprocity) Let m and n be two different odd coprime positive integers. Then

$$
\left(\frac{m}{n}\right)\left(\frac{n}{m}\right)=(-1)^{\frac{m-1}{2} \frac{n-1}{2}} .
$$

Here is a somewhat more comprehensible formula:

$$
\left(\frac{m}{n}\right)= \begin{cases}-\left(\frac{n}{m}\right) & \text { if } m \equiv n \equiv 3 \quad(\bmod 4) \\ \left(\frac{n}{m}\right) & \text { else }\end{cases}
$$

The proof is in the next section. First we illustrate the computation with an example:

Is 7 a quadratic residue $\bmod 107 ?$ No, as the following computation shows:

$$
\left(\frac{7}{107}\right)=-\left(\frac{107}{7}\right)=-\left(\frac{2}{7}\right)=-1
$$

Likewise 7 is not a quadratic residue $\bmod 11$:

$$
\left(\frac{7}{11}\right)=-\left(\frac{11}{7}\right)=-\left(\frac{4}{7}\right)=-\left(\frac{2}{7}\right)\left(\frac{2}{7}\right)=-1
$$

Hence 7 is a quadratic non-residue also $\bmod 1177=11 \cdot 107$. But $\left(\frac{7}{1177}\right)=1$.
From the law of quadratic reciprocity we derive the following algorithm:

Procedure JacobiSymbol

Input parameters:

$m, n=$ two integers.

Output parameter:

$\mathrm{jac}=\left(\frac{m}{n}\right)$.
Instructions:
If $n=0$ output jac $=0$ end
If $m=0$ output jac $=0$ end
If $\operatorname{gcd}(m, n)>1$ output jac $=0$ end
[Now $m, n \neq 0$ are coprime, so jac $= \pm 1$.]
$\mathrm{jac}=1$.
If $n<0$ replace n by $-n$.
If n is even divide n by the maximum possible power 2^{k}.
If $m<0$
replace m by $-m$,
if $n \equiv 3(\bmod 4)$ replace jac by -jac.
[From now on m and n are coprime, and n is positive and odd.]
[In the last step $m=0$ and $n=1$ may occur.]
If $m>n$ replace m by $m \bmod n$.
While $n>1$:
If m is even:
Divide m by the maximum possible power 2^{k},
if $(k$ is odd and $n \equiv \pm 3(\bmod 8))$ replace jac by - jac.
[Now m and n are odd and coprime, $0<m<n$.]
[The law of quadratic reciprocity applies.]
If $(m \equiv 3(\bmod 4)$ and $n \equiv 3(\bmod 4))$
replace jac by -jac.
Set $d=m, m=n \bmod m, n=d$.
The analysis of this algorithm resembles the analysis of the Euclidean algorithm: We need at most $5 \cdot \log (m)$ steps, each one essentially consisting of one integer division. Since the size of the operands rapidly decreases, the total cost amounts to $\mathrm{O}\left(\log _{2}(m)^{2}\right)$. This is significantly faster than applying EULER's criterion.

