A.6 Quadratic Reciprocity

Quadratic reciprocity provides a very convenient method of computing the JACOBI (or LEGENDRE) symbol and thereby deciding quadratic residuosity. It relies on the following two propositions and a lemma that helps to reduce composite modules to prime modules.

Lemma 15 Let $s, t \in \mathbb{Z}$ be odd. Then

- (i) $\frac{s-1}{2} + \frac{t-1}{2} \equiv \frac{st-1}{2} \pmod{2}$,
- (ii) $\frac{s^2-1}{8} + \frac{t^2-1}{8} \equiv \frac{s^2t^2-1}{8} \pmod{2}$.

Proof. Assume s = 2k + 1 and t = 2l + 1. Then st = 4kl + 2k + 2l + 1,

$$\frac{st-1}{2} = 2kl + k + l \equiv k + l = \frac{s-1}{2} + \frac{t-1}{2}.$$

Moreover

$$s^{2} = 4 \cdot (k^{2} + k) + 1, \quad t^{2} = 4 \cdot (l^{2} + l) + 1,$$

$$s^{2}t^{2} = 16 \cdot \ldots + 4 \cdot (k^{2} + k + l^{2} + l) + 1,$$

$$\frac{s^{2}t^{2} - 1}{8} = 2 \cdot \ldots + \frac{k^{2} + k + l^{2} + l}{2},$$

and this proves the assertion. \diamondsuit

Proposition 20 Let n be odd. Then

(i) $\left(\frac{-1}{n}\right) = (-1)^{\frac{n-1}{2}},$ (ii) $\left(\frac{2}{n}\right) = (-1)^{\frac{n^2-1}{8}}$

Proof. The lemma reduces the assertions to the case n = p prime.

(i) is a direct consequence of EULER's criterion, Proposition 19(ii) We have

$$(-1)^{k} \cdot k \equiv \begin{cases} k, & \text{if } k \text{ is even,} \\ p-k, & \text{if } k \text{ is odd,} \end{cases}$$
$$\prod_{k=1}^{\frac{p-1}{2}} (-1)^{k} \cdot k \equiv 2 \cdot 4 \cdots (p-1) = 2^{\frac{p-1}{2}} \cdot (\frac{p-1}{2})!.$$

Om the other hand

$$\prod_{k=1}^{\frac{p-1}{2}} (-1)^k \cdot k = (\frac{p-1}{2})! \cdot (-1)^{\frac{p^2-1}{8}}, \text{ since } \sum_{k=1}^{\frac{p-1}{2}} k = \frac{(p-1)(p+1)}{2 \cdot 2 \cdot 2}.$$

Now $\left(\frac{p-1}{2}\right)!$ is a product of positive integers < p, thus not a multiple of p. Hence we may divide by it. Then from the two equations and EULER's criterion we get

$$(-1)^{\frac{p^2-1}{8}} \equiv 2^{\frac{p-1}{2}} \equiv (\frac{2}{p}) \pmod{p}.$$

Since $p \geq 3$ this congruence implies equality. \diamondsuit

In particular 2 is a quadratic residue modulo the prime p if and only if $(p^2 - 1)/8$ is even, or $p^2 \equiv 1 \pmod{16}$, or $p \equiv 1 \text{ or } 7 \pmod{8}$.

Theorem 3 (Law of Quadratic Reciprocity) Let m and n be two different odd coprime positive integers. Then

$$(\frac{m}{n})(\frac{n}{m}) = (-1)^{\frac{m-1}{2}\frac{n-1}{2}}$$

Here is a somewhat more comprehensible formula:

$$\left(\frac{m}{n}\right) = \begin{cases} -\left(\frac{n}{m}\right) & \text{if } m \equiv n \equiv 3 \pmod{4}, \\ \left(\frac{n}{m}\right) & \text{else.} \end{cases}$$

The proof is in the next section. First we illustrate the computation with an example:

Is 7 a quadratic residue mod 107? *No*, as the following computation shows:

$$\left(\frac{7}{107}\right) = -\left(\frac{107}{7}\right) = -\left(\frac{2}{7}\right) = -1.$$

Likewise 7 is not a quadratic residue mod 11:

$$(\frac{7}{11}) = -(\frac{11}{7}) = -(\frac{4}{7}) = -(\frac{2}{7})(\frac{2}{7}) = -1.$$

Hence 7 is a quadratic non-residue also mod $1177 = 11 \cdot 107$. But $\left(\frac{7}{1177}\right) = 1$.

From the law of quadratic reciprocity we derive the following algorithm:

Procedure JacobiSymbol

Input parameters: m, n =two integers. **Output parameter:** $\operatorname{jac} = \left(\frac{m}{n}\right).$ **Instructions:** If n = 0 output jac = 0 end If m = 0 output jac = 0 end If gcd(m, n) > 1 output jac = 0 end [Now $m, n \neq 0$ are coprime, so $jac = \pm 1$.] jac = 1.If n < 0 replace n by -n. If n is even divide n by the maximum possible power 2^k . If m < 0replace m by -m, if $n \equiv 3 \pmod{4}$ replace jac by -jac. [From now on m and n are coprime, and n is positive and odd.] [In the last step m = 0 and n = 1 may occur.] If m > n replace m by $m \mod n$. While n > 1: If m is even: Divide m by the maximum possible power 2^k , if (k is odd and $n \equiv \pm 3 \pmod{8}$) replace jac by -jac. [Now m and n are odd and coprime, 0 < m < n.] [The law of quadratic reciprocity applies.] If $(m \equiv 3 \pmod{4})$ and $n \equiv 3 \pmod{4}$ replace jac by -jac. Set d = m, $m = n \mod m$, n = d.

The analysis of this algorithm resembles the analysis of the Euclidean algorithm: We need at most $5 \cdot \log(m)$ steps, each one essentially consisting of one integer division. Since the size of the operands rapidly decreases, the total cost amounts to $O(\log_2(m)^2)$. This is significantly faster than applying EULER's criterion.