A. 10 Some Group Theoretic Trivia

Here we collect some elementary results on finite groups. The exponent of a group G is the minimum positive integer $e($ or $\infty)$ such that $x^{e}=\mathbf{1}$ for all $x \in G$. Denote the order of a group element x by ord x (positive integer or $\infty)$.

Lemma 20 Let G be a finite group with exponent e. Then $e \mid \# G$, and $e=$ $t:=\operatorname{lcm}(\{\operatorname{ord} x \mid x \in G\})$.

Proof. By Lagrange's Theorem ord $x \mid \# G$ for all $x \in G$, hence $e \mid \# G$. Moreover $x^{e}=\mathbf{1}$ by definition of e, hence ord $x \mid e$ for all $x \in G$. Hence $t \mid e$. Sinc $x^{t}=\mathbf{1}$ for all x, even $t=e . \diamond$

Lemma 21 Let G and H be groups, $g \in G$ with ord $g=r$ and $h \in H$ with $\operatorname{ord} h=s$. Then $\operatorname{ord}(g, h)=\operatorname{lcm}(r, s)$ in the direct product $G \times H$.

Proof.

$$
\left(g^{e}, h^{e}\right)=(g, h)^{e}=\mathbf{1} \text { in } G \times H \Longleftrightarrow g^{e}=\mathbf{1} \text { in } G \text { and } h^{e}=\mathbf{1} \text { in } H .
$$

\diamond

Lemma 22 Let G be a group with exponent r and H be a group with exponent s. Then the direct product $G \times H$ has exponent $t:=\operatorname{lcm}(r, s)$.

Proof. Since $r, s \mid t$ we have $(g, h)^{t}=\left(g^{t}, h^{t}\right)=(\mathbf{1}, \mathbf{1})$ for all $g \in G$ and $h \in H$. Thus the exponent e of $G \times H$ is $\leq t$.

Since $(\mathbf{1}, \mathbf{1})=(g, h)^{e}=\left(g^{e}, h^{e}\right)$ for all g, h, we have $r \mid e$ and $s \mid e$, hence $t \mid e . \diamond$

Lemma 23 Let G be a cyclic group of prime order r, and H, a cyclic group of prime order $s \neq r$. Then the direct product $G \times H$ is cyclic of order $r \cdot s$.

Proof. Let $g \in G$ have order r, and $h \in H$ have order s. Then by Lemma 21 the element (g, h) has order $\operatorname{lcm}(r, s)=r \cdot s=\#(G \times H)$, hence generates $G \times H . \diamond$

Lemma 24 Let G be an abelian group.
(i) Let $a, b \in G$, $\operatorname{ord} a=r$, ord $b=s$, where r, s are finite and coprime. Then $\operatorname{ord}(a b)=r s$.
(ii) Let $a, b \in G$, ord $a=r$ and $\operatorname{ord} b=s$ finite, $t:=\operatorname{lcm}(r, s)$. Then $\operatorname{ord}(a b) \mid t$, and there is a $c \in G$ with ord $c=t$.
(iii) Let $m=\max \{\operatorname{ord} a \mid a \in G\}$ be finite. Then $\operatorname{ord} b \mid m$ for all $b \in G$. In particular m is the exponent of G.

Proof. (i) Let $k:=\operatorname{ord}(a b)$. From $(a b)^{r s}=\left(a^{r}\right)^{s} \cdot\left(b^{s}\right)^{r}=\mathbf{1}$ we conclude that $k \mid r s$. Conversely, since $a^{k s}=a^{k s} \cdot\left(b^{s}\right)^{k}=(a b)^{k s}=\mathbf{1}$ we have $r \mid k s$, hence $r \mid k$, and likewise $s \mid k$, hence $r s \mid k$.
(ii) Let $k:=\operatorname{ord}(a b)$. From $(a b)^{t}=a^{t} \cdot b^{t}=\mathbf{1}$ follows that $k \mid t$.

Now let p^{e} be a prime power with $p^{e} \mid t$, say $p^{e} \mid r$. Then $a^{r / p^{e}}$ has order p^{e}. Let $t=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ be the prime decomposition with different primes p_{i}. Then there are $c_{i} \in G$ with ord $c_{i}=p_{i}^{e_{i}}$. Since these orders are pairwise coprime, the element $c=c_{1} \cdots c_{r}$ has order t by (i).
(iii) Let $\operatorname{ord} b=s$. Then by (ii) there is a $c \in G$ with $\operatorname{ord} c=\operatorname{lcm}(m, s)$. Hence $\operatorname{lcm}(m, s) \leq m$, hence $=m$, thus $s \mid m$. \diamond

Remarks

1. For non-abelian groups all three statements (i)-(iii) may be false. As an example consider the symmetric group \mathcal{S}_{4} of order $4!=24$. The possible orders of its elements are 1 (for the trivial permutation), 2 for permutations consisting of one or two disjoint 2 -cycles, 3 for all 3 -cycles, and 4 for all 4 -cycles. Thus the maximum order is 4 , but the exponent $=$ the lcm of all orders is 12 (by Lemma 20). The cycle $\sigma=(123)$ has order $r=3$, the transposition $\tau=(34)$ has order $s=2$. Their product is the 4 -cycle (2341) of order $4 \neq \operatorname{lcm}(r, s)=6$, and there doesn't exist any permutation of order 6 .
2. In a nontrivial abelian group the order of a product $a b$ in general differs from the lcm of the single orders: Take $a \neq \mathbf{1}$ and $b=a^{-1}$.
