A.10 Some Group Theoretic Trivia

Here we collect some elementary results on finite groups. The exponent of a group G is the minimum positive integer e (or ∞) such that $x^e = \mathbf{1}$ for all $x \in G$. Denote the order of a group element x by ord x (positive integer or ∞).

Lemma 20 Let G be a finite group with exponent e. Then $e \mid \#G$, and $e = t := \operatorname{lcm}(\{\operatorname{ord} x \mid x \in G\}).$

Proof. By LAGRANGE's Theorem ord $x \mid \#G$ for all $x \in G$, hence $e \mid \#G$. Moreover $x^e = \mathbf{1}$ by definition of e, hence ord $x \mid e$ for all $x \in G$. Hence $t \mid e$. Sinc $x^t = \mathbf{1}$ for all x, even t = e. \diamond

Lemma 21 Let G and H be groups, $g \in G$ with $\operatorname{ord} g = r$ and $h \in H$ with $\operatorname{ord} h = s$. Then $\operatorname{ord}(g, h) = \operatorname{lcm}(r, s)$ in the direct product $G \times H$.

Proof.

$$(g^e, h^e) = (g, h)^e = \mathbf{1}$$
 in $G \times H \iff g^e = \mathbf{1}$ in G and $h^e = \mathbf{1}$ in H

Lemma 22 Let G be a group with exponent r and H be a group with exponent s. Then the direct product $G \times H$ has exponent t := lcm(r, s).

Proof. Since r, s | t we have $(g, h)^t = (g^t, h^t) = (\mathbf{1}, \mathbf{1})$ for all $g \in G$ and $h \in H$. Thus the exponent e of $G \times H$ is $\leq t$.

Since $(\mathbf{1}, \mathbf{1}) = (g, h)^e = (g^e, h^e)$ for all g, h, we have $r \mid e$ and $s \mid e$, hence $t \mid e$. \diamond

Lemma 23 Let G be a cyclic group of prime order r, and H, a cyclic group of prime order $s \neq r$. Then the direct product $G \times H$ is cyclic of order $r \cdot s$.

Proof. Let $g \in G$ have order r, and $h \in H$ have order s. Then by Lemma 21 the element (g, h) has order $\operatorname{lcm}(r, s) = r \cdot s = \#(G \times H)$, hence generates $G \times H$. \diamond

Lemma 24 Let G be an abelian group.

(i) Let $a, b \in G$, ord a = r, ord b = s, where r, s are finite and coprime. Then $\operatorname{ord}(ab) = rs$.

- (ii) Let $a, b \in G$, ord a = r and ord b = s finite, $t := \operatorname{lcm}(r, s)$. Then $\operatorname{ord}(ab) \mid t$, and there is $a \in G$ with $\operatorname{ord} c = t$.
- (iii) Let $m = \max\{ \operatorname{ord} a \mid a \in G \}$ be finite. Then $\operatorname{ord} b \mid m$ for all $b \in G$. In particular m is the exponent of G.

Proof. (i) Let $k := \operatorname{ord}(ab)$. From $(ab)^{rs} = (a^r)^s \cdot (b^s)^r = \mathbf{1}$ we conclude that $k \mid rs$. Conversely, since $a^{ks} = a^{ks} \cdot (b^s)^k = (ab)^{ks} = \mathbf{1}$ we have $r \mid ks$, hence $r \mid k$, and likewise $s \mid k$, hence $rs \mid k$.

(ii) Let $k := \operatorname{ord}(ab)$. From $(ab)^t = a^t \cdot b^t = \mathbf{1}$ follows that $k \mid t$.

Now let p^e be a prime power with $p^e | t$, say $p^e | r$. Then a^{r/p^e} has order p^e . Let $t = p_1^{e_1} \cdots p_r^{e_r}$ be the prime decomposition with different primes p_i . Then there are $c_i \in G$ with $\operatorname{ord} c_i = p_i^{e_i}$. Since these orders are pairwise coprime, the element $c = c_1 \cdots c_r$ has order t by (i).

(iii) Let ord b = s. Then by (ii) there is a $c \in G$ with ord $c = \operatorname{lcm}(m, s)$. Hence $\operatorname{lcm}(m, s) \leq m$, hence = m, thus $s \mid m$.

Remarks

- 1. For non-abelian groups all three statements (i)–(iii) may be false. As an example consider the symmetric group S_4 of order 4! = 24. The possible orders of its elements are 1 (for the trivial permutation), 2 for permutations consisting of one or two disjoint 2-cycles, 3 for all 3-cycles, and 4 for all 4-cycles. Thus the maximum order is 4, but the exponent = the lcm of all orders is 12 (by Lemma 20). The cycle $\sigma = (123)$ has order r = 3, the transposition $\tau = (34)$ has order s = 2. Their product is the 4-cycle (2341) of order $4 \neq \text{lcm}(r, s) = 6$, and there doesn't exist any permutation of order 6.
- 2. In a nontrivial abelian group the order of a product ab in general differs from the lcm of the single orders: Take $a \neq \mathbf{1}$ and $b = a^{-1}$.