A. 14 The BBS Sequence for Superspecial Blum Integers

Again we get the most satisfying results in the superspecial case:
Definition A superspecial BLUM integer is a product of two different superspecial primes.

Examples The two smallest superspecial primes are $p=23$ (with $p^{\prime}=11$, $p^{\prime \prime}=5$) and $q=47$ (with $q^{\prime}=23, q^{\prime \prime}=11$). Thus the smallest superspecial BLUM integer is $n=23 \cdot 47=1081$. By Section 2.1 we are confident (however don't know for sure) that there are very many superspecial BLUM integers.

Now let $n=p q$ be a superspecial BLUM integer with $p=2 p^{\prime}+1=4 p^{\prime \prime}+3$ and $q=2 q^{\prime}+1=4 q^{\prime \prime}+3$. Form the BBS sequence (1) for an initial value $x \in \mathbb{M}_{n}^{2}-\{1\}$. Then $s=\operatorname{ord}_{n}(x)$ takes one of the values p^{\prime}, q^{\prime}, or $p^{\prime} q^{\prime}$, the last on with extremely high probability, and the first two may be excluded by an easy check. The period of the BBS sequence is $\nu=\operatorname{ord}_{s}(2)$ by Proposition 26, and we may assume that $s=p^{\prime} q^{\prime}$. By the chinese remainder theorem and Lemma 21

$$
\nu=\operatorname{lcm}\left(\operatorname{ord}_{p^{\prime}}(2), \operatorname{ord}_{q^{\prime}}(2)\right)
$$

By the Corollary of Proposition 23 in Section A.9

$$
\begin{aligned}
& \operatorname{ord}_{p^{\prime}}(2)=\left\{\begin{array}{lll}
2 p^{\prime \prime} & \text { if } p^{\prime \prime} \equiv 1 & (\bmod 4)), \\
p^{\prime \prime} & \text { if } p^{\prime \prime} \equiv 3 & (\bmod 4))
\end{array}\right. \\
& \operatorname{ord}_{q^{\prime}}(2)=\left\{\begin{array}{lll}
2 q^{\prime \prime} & \text { if } q^{\prime \prime} \equiv 1 & (\bmod 4)) \\
q^{\prime \prime} & \text { if } q^{\prime \prime} \equiv 3 & (\bmod 4))
\end{array}\right.
\end{aligned}
$$

Thus finally we have shown:
Proposition 27 Let n be a superspecial BLUM integer. Let x be a quadratic residue $\bmod n$ with $x \not \equiv 1(\bmod p)$ and $x \not \equiv 1(\bmod q)$. Then the $B B S$ sequence $\bmod n$ for x has period

$$
\nu= \begin{cases}p^{\prime \prime} q^{\prime \prime} & \text { if } p^{\prime \prime} \equiv q^{\prime \prime} \equiv 3 \quad(\bmod 4) \\ 2 p^{\prime \prime} q^{\prime \prime} & \text { otherwise }\end{cases}
$$

If $p^{\prime \prime}$ and $q^{\prime \prime}$ are ($l-2$)-bit primes (hence $>2^{l-3}$, and n is an l-bit integer), then the period is $>2^{l-2}$ or about $n / 4$.

