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3 Cryptanalysis of Double Ciphers

Meet in the Middle

The name of this attack against double encryption goes back to MERKLE
and HELLMAN in 1981. (Don’t confuse it with the “Man in the Mid-
dle” attack against cryptographic protocols.) They formalized an attack
that worked in “classical times” against rotor machines, see the web
page http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic
/5 _Rotor/AnalRot.html.

Consider the composition of two encryption functions with different keys:
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Assume a pair (a,c) of corresponding plaintext and ciphertext is known,
and assume that the exhaustion of the simple cipher is feasible. Then the
attacker builds two tables:

o all fua), k € K,
o all f, (c), he K,

and compares them. Each coincidence yields a possible pair (h,k) € K2
of keys that can be further inspected, say with further known (or guessed)
plaintext.

Expenses

This attack needs
e 2. #K encryptions (not (#K)?),
e 2 - #K memory cells.

Noting that we need only store one of the two tables we even halve the
number of memory cells.
With the usual prefixes for memory sizes

210 220 230 240 250 260
Kilo | Mega | Giga | Tera | Peta | Exa

and using 1 byte = 8 bits we see that 60 bit keys need memory that ex-
ceeds the (actually) available capacities. However for cryptanalysis the time
requirements are more critical than memory requirements. Therefore as a
general finding we may state:

The security of a double cipher is not significantly better than
the security of the underlying simple cipher. In particular the
bitlength of a key exhaustion is not doubled but only increased
by 1 bit.
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False Alarms

One question yet awaits an answer: How many of the coincidences in com-
paring the two tables lead to a wrong pair of suspected keys? That is, how
likely are false alarms?

Here is a heuristic consideration: Assume we encrypt n-bit blocks with [-
bit keys. Then the tables have 2! entries, resulting in 2% comparisions. Since
the number of possible values is 2" we expect about N7 = 22/~ coincidences.
(Implicitly assuming that the values behave like random. By the Birthday
Paradox we expect the first coincidence after 2%/2 trials, but this is irrelevant
in the present context.)

If we test the pitched key pairs with a second known plaintext block,
then we are left with No = N;/2" = 22=2n candidates. After testing t
known plaintext blocks we expect to keep N; = 22—t candidates—but of
course at least one, the right one.

Thus in general we find a unique solution as soon as

21

t>—.
n

Examples

1. DES, n =64, | = 56: Ny = 28 N, = 2716, We need about 2 blocks of
known plaintext.

2. IDEA, n =64, [ = 128: N} = 2192 N, = 2128 N, =264 N, = 1. We
need about 4 blocks.

3. AES, n =128, 1 = 128: N; = 228, Ny, = 1. We need about 2 blocks.
But the number #K = 2'2® will by far exceed our time and memory
resources (as in Example 2).

Time-Memory-Tradeoff

A more general consideration yields a “Time Memory Tradeoff”: Under-
taking a Meet in the Middle attack we may spare memory, allowing more
execution time, by generating only partial tables:

If during a pass we fix s bits of both k and k, then we need 2!~* memory
cells for both of the tables of fi(a)’s and f, *(c)’s. As a compensation we
have to go through 22° passes. The expenses are:

2.2=5  encryptions for building one pair of tables,
225 comparisions of one pair of tables, in total

2.2*s  encryptions,

2.27%  memory cells.
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Multiplying the number of encryptions and the number of needed mem-
ory cells we get 4 - 22!, independently from s. This gives the attacker some
freedom in using her resources in a flexible way.

Example DES: If the attacker owns 128 terabytes of memory, she can
generate 2 tables of 249 blocks each, hence choose s = 56 — 40 = 16. Then
she needs 2 -2 encryptions. This is feasible, at least for the world’s largest
secret service.

Summary

Double ciphers don’t improve the security of encryption in a worthwile way.



