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1 Bitblock Ciphers—Introduction

Description

Bitblock ciphers operate over the alphabet Σ = F2 = {0, 1}, and basically
encrypt blocks of fixed length conserving this length, controlled by a key
that itself is a bitblock of a certain length l. The encryption functions are
defined as maps of the set Fn

2 into itself, and the set Fl
2 serves as key space.

For constructing and analyzing bitblock ciphers we usually view Fn
2 as

a vector space of dimension n over the two-element field F2. Sometimes we
equip Fn

2 with the structure of the field F2n , on rare occasions we structure
it as cyclic group of order 2n, thinking of integer addition “with carry”
mod 2n.

Thus we describe a bitblock cipher as a map

F : Fn
2 × Fl

2 −→ Fn
2

or as a family (Fk)k∈K of maps

Fk : Fn
2 −→ Fn

2 for k ∈ K = Fl
2

where Fk(a) = F (a, k).

Note In this chapter the mathematical symbol n is used for the length of
the bitblocks, not for the size of the alphabet.

We might also view a bitblock cipher as a monoalphabetic substitution
over the alphabet Σ′ = Fn

2 .
The extension of a cipher to bitstrings of arbitrary lengths is subject of

Chapter 3 on “modes”, and is of no concern for the moment, and likewise
we don’t care how to pad shorter bitstrings.

Choice of the Block Length

The block length should be large enough to preclude the methods that break
monoalphabetic substitutions, in particular analyses of patterns and fre-
quencies. Moreover we would like to avoid any kind of leaks that reveal
information about the plaintext, for example repeated ciphertext blocks.

If the sender didn’t systematically prevent repetitions, an attacker could
mount a codebook attack by collecting pairs of ciphertext and known
plaintext for a fixed (but unknown) key. In this way she would construct
her own codebook. A large codebook would allow breaking many future
messages even if it didn’t reveal the key. To prevent this attack we require:

• #Σ′ = 2n should be larger than the number of available memory cells,
even assuming a very powerful attacker.
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• Keys should be changed quite regularly.

In view of the Birthday Paradox an even stronger criterion is adequate:
If the attacker has collected in her codebook about

√
#Σ′ = 2n/2 plaintext-

ciphertext pairs, the probability of a “collision” is approximately 1
2 . There-

fore we require that the number 2n/2 surpasses the available storage. And
keys should be changed long before this number of blocks is encrypted.

In the “pre-AES” age bitblock ciphers usually had 64-bit blocks. From
our point of view this is by far insufficient, at best justified by frequent key
changes. We prefer 128 bits as block length. This is also the block length of
the new standard AES.

This consideration might look somewhat paranoid. But it is a typical
example of the security measures in modern cryptography: The cipher de-
signers work with large security margins and avoid any weaknesses even far
away from a practical use by an attacker. Thus the security requirements of
modern cryptography by far surpass the requirements typical for classical
cryptography. This may sound exaggerated. But the modern algorithms—
that in fact offer these huge security margins—can also resist future progress
of cryptanalytic capabilities.
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2 Polynomials over Finite Fields

In this section bitblock cryptography is “reduced” to algebra with polyno-
mials.

Let K be a field. Given a polynomial ϕ ∈ K[T1, . . . , Tn] in n indeter-
minates T1, . . . , Tn, we define a function Fϕ : Kn −→ K by evaluating the
polynomial ϕ at n-tuples (x1, . . . , xn) ∈ Kn,

Fϕ(x1, . . . , xn) := ϕ(x1, . . . , xn).

Note that we carefully distinguish between polynomials and polynomial
functions. Polynomials are elements of the polynomial ring K[T1, . . . , Tn]
where the elements Ti—the “indeterminates”—are a set of algebraically
independent elements. That means that the infinitely many monomials
T e1
1 · · ·T en

n are linearly independent over K.
In general (for infinite fields) there are many more (“non-polynomial”)

functions on Kn. But not so for finite fields—in other words, over a finite
field all functions are polynoms:

Theorem 1 Let K be a finite field with q elements, and n ∈ N. Then every
function F : Kn −→ K is given by a polynomial ϕ ∈ K[T1, . . . , Tn] of partial
degree ≤ q − 1 in each Ti.

The proof of Theorem 1 is in Appendix B, a more elementary proof for
the case K = F2 is in Appendix C.

Corollary 1 Let m,n ∈ N. Then every map F : Kn −→ Km is given by
an m-tuple (ϕ1, . . . , ϕm) of polynomials ϕi ∈ K[T1, . . . , Tn] of partial degree
≤ q − 1 in each Ti.

Corollary 2 Every map F : Fn
2 −→ Fm

2 is given by an m-tuple (ϕ1, . . . , ϕm)
of polynomials ϕi ∈ F2[T1, . . . , Tn] all of whose partial degrees are ≤ 1.

From this the algebraic normal form (ANF) of a Boolean function
F : Fn

2 −→ F2 derives: For a subset I = {i1, . . . , ir} ⊆ {1, . . . , n} let xI be
the monomial

xI = xi1 · · ·xir .

Then F has a unique representation as

F (x1, . . . , xn) =
∏
I

aIx
I for all x = (x1, . . . , xn) ∈ Kn where aI = 0 or 1.

In particular the 2n monomial functions x 7→ xI constitute a basis of the
vector space Map(Fn

2 ,F2) over F2, and the number of these functions is 22
n
.
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3 Algebraic Cryptanalysis

Attacks with Known Plaintext

Consider a bitblock cipher, given by the map

F : Fn
2 × Fl

2 −→ Fn
2

Then F is an n-tuple F = (F1, . . . , Fn) of polynomial functions in n + l
variables all of whose partial degrees are ≤ 1.

An attack with known plaintext a ∈ Fn
2 and corresponding ciphertext

c ∈ Fn
2 leads to a system

F (a, x) = c

of n polynomial equations for the unknown key x ∈ Fl
2.

Systems of polynomial equations (over arbitrary fields) are one of the
subjects of algebraic geometry. A rule of thumb says

The solution set for x has dimension 0 “in general” for n ≥ l.

(I. e. it consists of a few isolated solutions. Otherwise, if the solution set
allows for free parameters—or has dimension ≥ 1—, the attacker needs
some more blocks of known plaintext.)

The general theory of polynomial equations is quite deep, in particular if
we search for concrete solution procedures. But maybe the observation that
only partial degrees ≤ 1 occur makes a difference?

Examples

Example 1: Let n = l = 2,

F (T1, T2, X1, X2) = (T1 + T2X1, T2 + T1X2 +X1X2),

a = (0, 1), c = (1, 1) ∈ F2
2. Then the system of equations for the key

(x1, x2) ∈ F2
2 is (

1
1

)
=

(
0 + x1

1 + 0 + x1x2

)
.

The obvious solution is x1 = 1, x2 = 0.

Example 2, linear maps: If F is a linear map, then the system of equations
has an efficient solution by the methods of linear algebra (n linear
equations in l unknowns). For this method to work F needs to be
linear only in x.

Example 3, substitution: The complexity (or simplicity) of a polynomial
equation is not always clear at first sight. Here is an example (over
F2):

x1x2x3 + x1x2 + x1x3 + x2x3 + x2 + x3 = 0.
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The substitutions xi = ui + 1 transform it to

u1u2u3 + u1 = 0

(for an easy proof look in the reverse direction). The solutions are

u1 = 0, u2, u3 arbitrary or u1 = u2 = u3 = 1.

Thus the complete solution of the original equation is

x1 = 1, x2, x3 arbitrary or x1 = x2 = x3 = 0.

The Complexity of the Algebraic Attack

In the examples the solutions were easily found. But in general this task is
too complex.

There are two powerful general approaches for solving systems of (poly-
nomial) equations over F2:

• SAT solvers. SAT denotes the satisfiability problem of propositional
logic. Consider a logical expression in Boolean variables x1, . . . , xn and
ask if there exist values of the variables that make the expression
“True”. In other words consider a Boolean function f and ask if it
assumes the value 1. A SAT solver is an algorithm that takes a log-
ical expression and decides the satisfiability by finding a solution x,
or showing there’s no solution. The naive algorithm uses the truth ta-
ble and exhausts the 2n possible arguments. However there are much
faster algorithms, the most popular being the DPLL algorithm (after
Davis, Putnam, Logemann, and Loveland) and BDD based algorithms
(Binary Decision Diagram).

• Elimination using Groebner bases.

Both methods work well for a small number of unknowns. With a growing
number of unknowns their complexity becomes unmanageable. Of course we
always find a solution by searching through the complete value table. But
this naive method is inefficient (exponential in the number of unknowns,
hopeless for 80 or more unknowns). But also the costs of SAT solvers and
Groebner-basis methods grow exponentially with the number of unknowns.
Not even the fact that all partial degrees are ≤ 1 is of vital help. The basic
resault is:

Theorem 2 (Garey/Johnson) The problem of finding a common zero of
a system of polynoms f1, . . . , fr ∈ F2[T1, . . . Tn] is NP-complete.

Proof. See [1]. 3

What “NP-complete” means will be answered later in this lecture (see
Part III, Chapter 6). In fact SAT was the first problem in history shown to
be NP-complete.
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Interpretation

A common interpretation of this theorem is: For an appropriately chosen
block cipher F : Fn

2 × Fl
2 −→ Fn

2 the attack with known plaintext (against
the key k ∈ Fl

2) is not efficient. However from a strict mathematical point
of view the theorem doesn’t prove anything of practical relevance:

1. It relates to an algorithm for arbitrary polynomial equations (over F2).
It doesn’t contain any assertion for special classes of polynomials, or
for a concrete system of equations.

2. It gives a pure proof of (non-) existence, and provides no hint as how
to construct a concrete example of a “difficult” system of equations.
Note that we know that some concrete systems admit easy solutions.

3. Even if we could find concrete examples of “difficult” systems the the-
orem would not make any assertion whether only some rare instances
(the “worst cases”) are difficult, or almost all (the “generic cases”)—
and this is what the cryptologist wants to know. Maybe there is an
algorithm that solves polynomial systems for almost all tuples of un-
knowns in an efficient way, and only fails for a few exceptional tuples.

Despite these critical comments the theorem raises hope that there are “se-
cure” bitblock ciphers, and the designers of bitblock ciphers follow the

Rule of thumb Systems of linear equations for bits admit very efficient
solutions. Systems of nonlinear equations for bits in almost all cases
admit no efficient solution.

A recent article on the difficulty of systems of polynom equations is

• D. Castro, M. Giusti, J. Heintz, G. Matera, L. M. Pardo:
The hardness of polynomial equation solving. Found. Comput. Math.
3 (2003), 347–420.

Interpolation Attack

A variant of algebraic cryptanalysis with known plaintext is the interpolation
attack, developed in

• Thomas Jakobsen, Lars R. Knudsen: The interpolation attack on
block ciphers, FSE 1997.

The idea is simple: Equip the vector space Fn
2 with a suitable multiplication

and interpret it as the finite field K = F2n of characteristic 2. An encryption
function with a fixed key k ∈ Fl

2 then is a function Fk : K −→ K, hence
a polynomial in one indeterminate over K. Let d be its degree. Then using
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interpolation this polynomial is determined by d+1 known plaintext blocks.
The same is true for the inverse function. Using this the attacker can encrypt
and decrypt without knowing the key explicitly.

The cipher designer who wants to prevent this attack should take care
that encryption and decryption functions for every fixed key have large de-
grees as polynomials over K. This is realistic since polynomials over K may
have (effective) degrees up to 2n − 1.

But beware that this attack may also work for some polynomials of high
degree, for example for “sparse” polynomials having only a few coefficients
6= 0.

Linearisation of Overdetermined Systems of Equations

Systems of equations of higher order are sometimes solvable, if they are
overdetermined, consisting of much more equations than unknowns. Then
one simply treats some monomials as additional independent unknowns.
Let’s illustrate this by a simple example of three equations with two un-
knowns x and y:

x3 + xy + y5 = 1,

2x3 − xy = 0,

xy + 3y5 = 3.

We substitute all occuring monomials: u := x3, v := xy, w := y5 and get
the linear system

u+ v + w = 1

2u− v = 0

v + 3w = 3

consisting of three equations involving three unknowns. The solution (in
this case even manually derived) is u = 0, v = 0, w = 1. It is unique over a
field K of characteristic 6= 7. From here we get the complete solution of the
original system: x = 0, y = 1 or any 5th root of unity of K.

This attack gained some popularity in 2002 when there was a rumor that
the new AES be vulnerable under this attack. However this rumor didn’t
survive a closer examination. As it turned out there were much too many
dependencies between the linear equations.
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4 SP Networks

In an ideal world we would know how to reliably measure the security of a
bitblock cipher

F : Fn
2 × Fl

2 −→ Fn
2

for realistic values of the block length n and the key length l, say of an order
of magnitude of 128 bits or more.

In fact we know explicit measures of security, for example the linear
potential, or the differential potential, that quantify the deviation from lin-
earity, or the algebraic immunity, or others. Unfortunately all of these only
give necessary, not sufficient, conditions for security, and moreover the ef-
ficient computability of these measures is limited to small block lengths n,
about 8 or slightly larger.

Lacking a general efficient approach to security the design of bitblock
ciphers usually relies on a structure that, although not obligatory, in practice
seems to provide plausible security according to verifiable criteria. Most of
the generally approved standard ciphers, such as DES and AES, follow this
approach.

Rounds of Bitblock Ciphers

This common design scheme starts by constructing Boolean maps of small
dimensions and then extending them to the desired block length in several
steps:

1. Define one or more Boolean maps of small dimension q (= block length
of the definition domain), say q = 4, 6, or 8, that are good for sev-
eral security criteria. These maps are called S-boxes (“S” stands for
Substitution), and are the elementary building blocks of the cipher.

2. Mix the round input with some of the key bits and then apply m S-
boxes in parallel (or apply the one S-box m times in parallel) to get a
map with the desired input width n = mq.

3. Then permute the complete resulting bitblock over its total width.

4. These steps together are a “round” of the complete scheme. Asset the
weaknesses of the round map, that mainly result from using S-boxes
of small dimension. Then reduce these weaknesses in a reasonably
controlled way by iterating the scheme over several rounds of the same
structure but with a changing choice of key bits.

5. Don’t stop as soon as the security measures give satisfying values but
add some surplus rounds to get a wide security margin.

Figure 1 outlines the scheme for a single round.
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round input (n bits)

???
. . . . . .

??? key

k
n = mq of l bits ����
�[⊕ or other composition]

?
. . .
?

. . . . . .
?
. . .
?

S

?
. . .
?

. . . . . .

. . . . . .

S

?
. . .
?

P

???
. . . . . .

???
round output (n bits)

Figure 1: A single round of a bitblock cipher (S is a, maybe varying, S-box,
P , a permutation, k, the key)

Shannon’s Design Principles

The complete scheme is a special case of a somewhat more general proposal
that goes back to Shannon who required two basic features of block ciphers:

Diffusion The bits of the plaintext block “smear” over all parts of the block.
This is done by applying permutations (a. k. a. as transpositions).

Confusion (complex dependencies) The interrelation between plaintext
block and key on the one hand, as well as ciphertext block on the
other hand should be as complex as possible (in particular as nonlin-
ear as possible). Basic building blocks for this are substitutions.

The overall effect of both requirements, taken together, should result in an
unforeseeable change of ciphertext bits for a slight change of the key.

The attacker should have no means to recognize whether a
guessed key is “nearly correct”.

Product Ciphers after Shannon

For the construction of strong block ciphers Shannon proposed an alternat-
ing sequence of Substitutions and transpositions (= Permutations), so-called
SP-networks:

Fn
2

S1(•,k)−→ Fn
2

P1(•,k)−→ Fn
2 −→ . . .

. . . −→ Fn
2

Sr(•,k)−→ Fn
2

Pr(•,k)−→ Fn
2
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depending on a key k ∈ Fl
2. In this scheme

Si = i-th substitution

Pi = i-th permutation

Pi ◦ Si = i-th round

Alltogether the encryption function consists of r rounds.

Example: Lucifer I (Feistel 1973)

Note that the permutations are special linear maps P : Fn
2 −→ Fn

2 . Some
recent bitblock ciphers, the most prominent being AES, replace permuta-
tions by more general linear maps that provide an even better diffusion.
However the proper term “LP-network” is not yet in use.
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5 Feistel Networks

Horst Feistel was the first (in the open world) who explicitly applied Shan-
non’s design principles when he constructed the Lucifer ciphers.

The Kernel Map

Assume the blocksize is even: n = 2s. Decompose blocks a ∈ Fn
2 into their

left and right halves:
a = (L,R) ∈ Fs

2 × Fs
2

(We use uppercase letters to avoid confusion with the dimension l of the
keyspace.) Moreover we have to agree on the order of the bits in a block:

• The natural order has the LSB (Least Significant Bit) always at the
right end and assigns it the index 0, the MSB (Most Significant Bit)
at the left end with index n− 1:

b = (bn−1, . . . , b0) ∈ Fn
2 .

This corresponds to the base 2 representation of natural numbers in
the integer interval [0 . . . 2n[:

bn−1 · 2n−1 + · · ·+ b1 · 2 + b0 ∈ N

This is the order we use in most situations.

• The IBM order has the bits in reverse (LSB at left, MSB at right)
and assigns them the indices 1 to n:

a = (a1, . . . , an) ∈ Fn
2 .

This corresponds to the usual indexing of the components of a vector.
Sometimes, in exceptional cases, the indices 0 to n− 1 are used.

The elemantery building blocks of a Feistel cipher are represented by
a kernel map

f : Fs
2 × Fq

2 −→ Fs
2,

that need not fulfill any further formal requirements. In particular we don’t
require that the f(•, k) be bijective.

However to get a useful cipher we should choose a kernel map
f that already provides good confusion and diffusion. It should
consist of a composition of substitutions and transpositions and
be highly nonlinear.
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Description of the Rounds

A Feistel cipher consists or r rounds. Each round uses a q-bit round key
that is derived from the key k ∈ Fl

2 by a process called the key schedule:

αi : Fl
2 −→ Fq

2 for i = 1, . . . , r.

Then round i has this form:

Li−1 Ri−1 ∈ Fs
2 × Fs

2

k ∈ Fl
2

f(Ri−1, αi(k))

⊕
(XOR, bitwise addition)

Li = Ri−1 Ri

?

?

?

?

@
@
@
@
@
@@R

�
�

�
�

�
�

�

?

We recognize the autokey principle in form of the addition of the left
half and the transformed right half of a bitblock.

Algorithmic Description

From the graphical description we easily derive an algorithmic description:

Input −→ a = (a0, a1) ∈ Fs
2 × Fs

2

a2 := a0 + f(a1, α1(k))
– 1st round, result (a1, a2)

...
...

ai+1 := ai−1 + f(ai, αi(k))
– i-th round, result (ai, ai+1)
– [ai = Ri−1 = Li, ai+1 = Ri]

...
...

Output ←− c = (ar, ar+1) =: F (a, k)

Decryption

The decryption is done by the formula

ai−1 = ai+1 + f(ai, αi(k)) for i = 1, . . . , r.

This boils down to the same algorithm, but the rounds in reverse order. Or
in other words: The key schedule follows the reverse direction.

In particular we proved:
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Theorem 3 (Feistel) Let F : F2s
2 ×Fl

2 −→ F2s
2 be the block cipher with ker-

nel map f : Fs
2×F

q
2 −→ Fs

2 and key schedule α = (α1, . . . , αr), αi : Fl
2 −→ Fq

2.
Then the encryption function F (•, k) : F2s

2 −→ F2s
2 is bijective for every

key k ∈ Fl
2.

Addendum. Decryption follows the same algorithm with the same ker-
nel map f but the reverse key schedule (αr, . . . , α1).

Note When the deryption starts with c = (ar, ar+1), then as a first step
the two halves must be swapped because the algorithm starts with
(ar+1, ar). To simplify this, in the last round of a Feistel cipher the
interchange of L and R is usually dropped.

Remarks

• If f and the αi are linear so is F .

• Usually the αi are only selections, hence as maps projections
Fl
2 −→ Fq

2.

• Other graphical descriptions of the Feistel scheme are:

a) a ladder

-
L0

-R0 L1

?

f1

∗ -
R1 L2

6

f2

∗

∗

-R2

?

f3

-

6
∗ -

· · ·

· · · Ri = Li−1 ∗ fi(Ri−1)

Li = Ri−1

fi = f(•, αi(k))

b) a twisted ladder

- - - -? ? ? ?
∗ ∗ ∗ ∗

@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

@
@
@
@
@�

�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

· · ·

· · ·

L0

R0

f1

L1

R1

f2

L2

R2

f3

Generalizations

1. Replace the group (Fs
2,+) by an arbitrary group (G, ∗). Then the

formulas for encryption and decryption are:

ai+1 = ai−1 ∗ f(ai, αi(k))),

ai−1 = ai+1 ∗ f(ai, αi(k)))−1.
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2. Unbalanced Feistel ciphers (Schneier/Kelsey): Divide the
blocks into two different halves: Fn

2 = Fs
2 × Ft

2, x = (λ(x), ρ(x)).
Then the encryption formula is:

Li = ρ(Li−1, Ri−1) ∈ Fs
2,

Ri = λ(Li−1, Ri−1) + f(Li, αi(k))) ∈ Ft
2.

Examples

1. Lucifer II (Feistel 1971, published in 1975),

2. DES (Coppersmith et al. for IBM in 1974, published as US
standard in 1977),

3. many newer bitblock ciphers.

The usefulness of Feistel networks relies on the empirical observations:

• By the repeated execution through several rounds the “(s, q)-bit secu-
rity” (or “local security”) of the kernel map f is expanded to “(n, l)-bit
security” (or “global security”) of the complete Feistel cipher F .

• The complete cipher is composed of manageable pieces that may be
“locally” optimized for security.

Luby/Rackoff underpinned the first of these observations by a theo-
retical result: A Feistel cipher with at least four rounds is not efficiently
distinguishable from a random permutation, if its kernel map is random. This
means that by Feistel’s construction a map with good random properties
but too small block length expands to a map with good random properties
and sufficient block length.

Michael Luby, Charles Rackoff: How to construct pseudoran-
dom permutations from pseudorandom functions. SIAM Journal
on Computing 17 (1988), 373–386

Two words of caution about the Luby/Rackoff result:

• It doesn’t say anything about an attack with known or chosen plain-
text.

• It holds for true random kernel maps. However concrete Feistel ci-
phers usually restrict the possible kernel maps to a subset defined by
a choice of 2q keys.
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6 Algebraic Attacks for Few Rounds

Formulas for Few Rounds

We write the recursion formula for a Feistel cipher as

(Li, Ri) = (Ri−1, Li−1 + f(Ri−1, ki))

where ki = αi(k) is the round key.

Proposition 1 The results (Lr, Rr) of a Feistel cipher after r = 2, 3, or
4 rounds satisfy the equations

L2 − L0 = f(R0, k1),

R2 −R0 = f(L2, k2);

L3 −R0 = f(L0 + f(R0, k1), k2),

R3 − L0 = f(L3, k3) + f(R0, k1);

L4 − L0 = f(R0, k1) + f(R4 − f(L4, k4), k3),

R4 −R0 = f(L4, k4) + f(L0 + f(R0, k1), k2).

We used minus signs in order to make the formulas valid also for a gen-
eralization to abelian groups. In the (present) binary case plus and minus
coincide. The purpose of the formulas is that beside the round keys ki they
involve only the plaintext (L0, R0) and the ciphertext (Lr, Rr), data that
are assumed as known for algebraic cryptanalysis.

Proof. In the case of two rounds the equations are

L1 = R0,

R1 = L0 + f(R0, k1),

L2 = R1 = L0 + f(R0, k1),

R2 = L1 + f(R1, k2) = R0 + f(L2, k2);

the assertion follows immediately.
In the case of three rounds we have

L1 = R0,

R1 = L0 + f(R0, k1),

L2 = R1 = L0 + f(R0, k1),

R2 = L1 + f(R1, k2) = R0 + f(L2, k2),

L3 = R2 = R0 + f(L0 + f(R0, k1), k2),

R3 = L2 + f(R2, k3) = L0 + f(R0, k1) + f(L3, k3).

The case of four rounds is left to the reader. 3
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Two-Round Ciphers

For a known plaintext attack assume that L0, R0, L2, R2 are given. We have
to solve the equations

L2 − L0 = f(R0, k1)

R2 −R0 = f(L2, k2)

for k1 and k2. Thus the security of the cipher only depends on the difficulty
of inverting the kernel function f . Since usually q, the bitlength of the partial
keys, is much smaller than the total key length l the 2q+1 evaluations of f
for an exhaustion could be feasible. Note that this consideration doesn’t
depend on the key schedule α—the attacker simply determines the actually
used keybits (k1, k2).

Example: We equip Fs
2 with the multiplication “·” of the field Ft, t = 2s,

[see Appendix A] and take

f(x, y) = x · y.

(Note that f is non-linear as a whole, but linear in the key bits.)
Assume the key schedule is defined by l = 2q and ki = left or right
half of k, depending on whether i is odd or even. Then the equations
become

L2 − L0 = R0 · k1,
R2 −R0 = L2 · k2,

hence are easily solved. (If one of the factors R0 or L2 vanishes, we
need another known plaintext block.)

Of course chosing a kernel map f that is linear in the key bits was a
bad idea anyway. But we could solve also slightly more complicated
equations, say quadratic, cubic, or quartic.

Three-Round Ciphers

In the case of three rounds the equations are considerably more complex
because f is iterated. However the attacker can mount a Meet-in-the-Middle
attack with a single known plaintext, if the bit length q of the partial keys
is not too large: She calculates the intermediate results (L1, R1) of the first
round for all possible partial keys k1, and stores them in a table. Then she
performs an exhaustion over the last two rounds as described for two-round
ciphers above. The total expenses are 3 ·2q evaluations of f , and 2q memory
cells.
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These considerations suggest that Feistel ciphers should have at least
four rounds and support the above mentioned result by Luby and Rack-
off. We see how the resistance of the scheme against an algebraic attack
increases with the number of rounds, at least if the kernel map f is suffi-
ciently complex.

For the example above with kernel map = multiplication of F2s the
equations become:

L3 −R0 = [L0 +R0 · k1)] · k2,
R3 − L0 = [R0 +R3] · k1.

They are nonlinear in the key bits but easily solved in the field F2s .

Four-Round Ciphers

The equations are much more complex. Even in the example they are
quadratic in two unknowns:

L4 − L0 = [R0 +R4 + L4 · k2] · k1,
R4 −R0 = [L4 + L0 +R0 · k1] · k2.

However in this trivial example they can be solved: eliminating k1 yields a
quadratic equation for k2 [Exercise].
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7 Lucifer

History and Relevance

Lucifer was the first published bitblock cipher. Horst Feistel at IBM
developed it around 1970. It is in fact a Feistel cipher, and is a predecessor
of the standard cipher DES that was developed shortly after. Compared with
DES Lucifer seems stronger at first sight, but has some decisive weaknesses
that became apparent in the meantime.

Here we describe the variant that is called “Lucifer II” because
of its publication date in 1975. First published (1973 in Scientific
American) was a somewhat different variant called “Lucifer I”.

These are the characteristics of Lucifer (compare the figures below):

• 128-bit key. This is a large enough key space even for today’s require-
ments.

• 128-bit blocks. This is also considered sufficent down to the present
day.

• For processing the 128-bit blocks (of keys and texts) are divided into
16 bytes. (From a historic point of we should say “octets” instead of
“bytes” since in early computers a byte not necessarily consisted of
exactly 8 bits.)

• The Feistel scheme consists of 16 rounds.

• In each round the 8 bytes of the right half Ri of a block (= 64 Bits)
are processed quasi in parallel. In other words, every round processes
8 blocks à 1 byte, each one independently from the other ones.

• Each of the rounds consists of a substitution and a permutation. In
between some key bits are added (XORed).

• Nonlinearity enters the algorithm only by the substitution. The newly
added key bits are processed in a linear way in the actual round, but
then are input to the nonlinear substitution of the next round.

• The substitution of a byte starts with a decomposition into two halves
à 4 bit each of which is separately transformed by a substitution

S0, S1 : F4
2 −→ F4

2.

S0 and S1 are fixed substitutions used during the whole encryption
process. Only the assignement of S0 and S1 to the 4-bit halves varies
depending on a certain key bit. It is common use to call such non-
linear BOOLEean maps “S-boxes” when they occur as even more
elementary building blocks of a kernel map.
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The algorithm is very well suited for an implementation in hardware,
in particular for 8-bit architectures. It is not so efficient in software for its
many bit permutations.

Composing the kernel map of many small (identical or similar) S-boxes
is a way followed often also today. A rule of thumb: the smaller the S-boxes,
the more rounds are needed to achieve security.

The presentation of the algorithm follows the paper

• Arthur Sorkin: Lucifer, a cryptographic algorithm. Cryptologia 8
(1984), 22–41.

The Key Schedule

Denote the 16 bytes of the key k ∈ F128
2 by

k = (k0, . . . , k15) ∈ (F8
2)

16

(IBM order but beginning with 0). Round i involves the selection

αi(k) = (αij(k))0≤j≤7 of 8 bytes αij(k) = k7i+j−8 mod 16.

This formula looks complicated but describes a quite simple selection
scheme:

Round Position
0 1 2 3 4 5 6 7

1 0 1 2 3 4 5 6 7
2 7 8 9 10 11 12 13 14
3 14 15 0 1 2 3 4 5
4 5 6 7 8 9 10 11 12
5 12 13 14 15 0 1 2 3
6 3 4 5 6 7 8 9 10
7 10 11 12 13 14 15 0 1
8 1 2 3 4 5 6 7 8
9 8 9 10 11 12 13 14 15

10 15 0 1 2 3 4 5 6
11 6 7 8 9 10 11 12 13
12 13 14 15 0 1 2 3 4
13 4 5 6 7 8 9 10 11
14 11 12 13 14 15 0 1 2
15 2 3 4 5 6 7 8 9
16 9 10 11 12 13 14 15 0

With each new round the selection is cyclically shifted by 7 positions.
Note that each byte occurs at each position exactly once. The position de-
fines to which byte of the actual 64-bit blocks the actual key byte applies.
Furthermore the byte αi0(k) in position 0 serves as “transformation control
byte”.
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The Round Map

In round i the input, that is the right 64-bit part of the actual block, is
divided into eight bytes

r = (r0, . . . , r7).

L R

64 64

r0 r1 r2 r3 r4 r5 r6 r7

8 8 8 8 8 8 8 8

Byte number j is transformed as follows by this round:

r′j

?

⊕
?

?P
⊕
?

?
Sx

?
S1−x

rjl′′j

-

αij(k)

�

Here l′′j is a fixed selection of eight bits from the left part of the actual block.
The transformation control byte

αi1(k) = (b0, . . . , b7)

is taken from right to left, and x = b7−j .
The definition of the kernel map f is clear from this picture. The explicit

formula is not quite compact, therefore we omit it.

The S-Boxes

The S-boxes
S0, S1 : F4

2 −→ F4
2

are given by their value tables. Here the 4-bit blocks are written in hexadec-
imal notation, for example 1011 = B.
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x = 0 1 2 3 4 5 6 7 8 9 A B C D E F

S0(x) = C F 7 A E D B 0 2 6 3 1 9 4 5 8

x = 0 1 2 3 4 5 6 7 8 9 A B C D E F

S1(x) = 7 2 E 9 3 B 0 4 C D 1 A 6 F 8 5

The Permutations

The permutation P permutes the bits of a byte as follows:

P : F8
2 −→ F8

2,

(z0, z1, z2, z3, z4, z5, z6, z7) 7→ (z2, z5, z4, z0, z3, z1, z7, z6).

The bitwise addition of the left half to the transformed right half follows
a permutation whose description is: Divide the left half of the actual block
into eight bytes:

L = (l0, l1, l2, l3, l4, l5, l6, l7).

Rotate these cyclically after each step. Then for rj they are in the positions

(l′0, . . . , l
′
7) = (lj , . . . , l7+j mod 8).

Finally construct the byte l′′j as

l′′j = (Bit 0 of l′7,Bit 1 of l′6,Bit 2 of l′2, . . .)

etc. in the order (7, 6, 2, 1, 5, 0, 3, 4), and add it to rj .
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