2 Polynomials over Finite Fields

In this section bitblock cryptography is "reduced" to algebra with polynomials.

Let K be a field. Given a polynomial $\varphi \in K\left[T_{1}, \ldots, T_{n}\right]$ in n indeterminates T_{1}, \ldots, T_{n}, we define a function $F_{\varphi}: K^{n} \longrightarrow K$ by evaluating the polynomial φ at n-tuples $\left(x_{1}, \ldots, x_{n}\right) \in K^{n}$,

$$
F_{\varphi}\left(x_{1}, \ldots, x_{n}\right):=\varphi\left(x_{1}, \ldots, x_{n}\right)
$$

Note that we carefully distinguish between polynomials and polynomial functions. Polynomials are elements of the polynomial ring $K\left[T_{1}, \ldots, T_{n}\right]$ where the elements T_{i} - the "indeterminates" - are a set of algebraically independent elements. That means that the infinitely many monomials $T_{1}^{e_{1}} \cdots T_{n}^{e_{n}}$ are linearly independent over K.

In general (for infinite fields) there are many more ("non-polynomial") functions on K^{n}. But not so for finite fields-in other words, over a finite field all functions are polynoms:

Theorem 1 Let K be a finite field with q elements, and $n \in \mathbb{N}$. Then every function $F: K^{n} \longrightarrow K$ is given by a polynomial $\varphi \in K\left[T_{1}, \ldots, T_{n}\right]$ of partial degree $\leq q-1$ in each T_{i}.

The proof of Theorem 1 is in Appendix B, a more elementary proof for the case $K=\mathbb{F}_{2}$ is in Appendix C.

Corollary 1 Let $m, n \in \mathbb{N}$. Then every map $F: K^{n} \longrightarrow K^{m}$ is given by an m-tuple $\left(\varphi_{1}, \ldots, \varphi_{m}\right)$ of polynomials $\varphi_{i} \in K\left[T_{1}, \ldots, T_{n}\right]$ of partial degree $\leq q-1$ in each T_{i}.

Corollary 2 Every map $F: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{m}$ is given by an m-tuple $\left(\varphi_{1}, \ldots, \varphi_{m}\right)$ of polynomials $\varphi_{i} \in \mathbb{F}_{2}\left[T_{1}, \ldots, T_{n}\right]$ all of whose partial degrees are ≤ 1.

From this the algebraic normal form (ANF) of a Boolean function $F: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}$ derives: For a subset $I=\left\{i_{1}, \ldots, i_{r}\right\} \subseteq\{1, \ldots, n\}$ let x^{I} be the monomial

$$
x^{I}=x_{i_{1}} \cdots x_{i_{r}} .
$$

Then F has a unique representation as
$F\left(x_{1}, \ldots, x_{n}\right)=\prod_{I} a_{I} x^{I} \quad$ for all $x=\left(x_{1}, \ldots, x_{n}\right) \in K^{n}$ where $a_{I}=0$ or 1.
In particular the 2^{n} monomial functions $x \mapsto x^{I}$ constitute a basis of the vector space $\operatorname{Map}\left(\mathbb{F}_{2}^{n}, \mathbb{F}_{2}\right)$ over \mathbb{F}_{2}, and the number of these functions is $2^{2^{n}}$.

