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(n = m · q bits)
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Figure 5.8: Example D, parallel arrangement of m S-boxes S1, . . . , Sm of
width q

5.6 Parallel Arrangement of S-Boxes

The round map of an SP-network usually involves several “small” S-boxes
in a parallel arrangement. On order to analyze the effect of this construction
we again consider a simple example D, see Figure 5.8.

Proposition 8 Let S1, . . . ,Sm : Fq
2 −→ Fq

2 be Boolean maps, n = m · q, and
f , the Boolean map

f : Fn
2 −→ Fn

2 , f(x1, . . . , xm) = (S1(x1), . . . ,Sm(xm)) for x1, . . . , xm ∈ Fq
2.

Let (αi,βi) for i = 1, . . . ,m be linear relations for Si with probabilities pi.

Let

α(x1, . . . , xm) = α1(x1) + · · ·+ αm(xm)

β(y1, . . . , ym) = β1(y1) + · · ·+ βm(ym)

Then (α,β) is a linear relation for f with probability p given by

2p− 1 = (2p1 − 1) · · · (2pm − 1).

Proof. We consider the case m = 2 only; the general case follows by a
simple induction as for Proposition 7.

In the case m = 2 we have β ◦ f(x1, x2) = α(x1, x2) if and only if
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• either β1 ◦ S1(x1) = α1(x1) and β2 ◦ S2(x2) = α2(x2)

• or β1 ◦ S1(x1) = 1 + α1(x1) and β2 ◦ S2(x2) = 1 + α2(x2).

Hence p = p1p2 + (1− p1)(1− p2), and the assertion follows as for Proposi-
tion 6. ✸

As a consequence the I/O-correlations and the potentials are multi-
plicative also for a parallel arrangement. At first view this might seem a
strengthening of the security, but this appearance is deceiving! We cannot
detain the attacker from choosing all linear forms as zeroes except the “best”
one. And the zero forms have probabilities pi = 1 and potentials 1. Hence
the attacker picks a pair (αj ,βj) with maximum potential, and then sets
α(x1, . . . , xm) = αj(xj) and β(y1, . . . , ym) = βj(yj). In a certain sense she
turns the other S-boxes, except Sj , “inactive”. Then the complete linear
relation inherits exactly the probability and the potential of the “active”
S-box Sj .

Example

Once again we consider a concrete example with m = 2 and q = 4, hence
n = 8. As S-boxes we take the ones from Lucifer, S0 at the left, and
S1 at the right, see Figure 5.8. For the left S-box S0 we take the linear
relation with α =̂ 0001 and β =̂ 1101, that we know has probability p1 =

7
8 ,

for the right S-Box S1 we take the relation (0, 0) with probability 1. The
combined linear relation for f = (S0, S1) then also has probability p = 7

8
and potential λ = 9

16 , and we know that linear cryptanalysis with N = 5
pairs of plaintext and ciphertext has 95% success probability. We decompose
all relevant bitblocks into bits:

plaintext: a = (a0, . . . , a7) ∈ F8
2,

ciphertext: c = (c0, . . . , c7) ∈ F8
2,

key: k = (k0, . . . , k15) ∈ F16
2 where (k0, . . . , k7) serves as “initial key” (cor-

responding to k
(0) in Figure 5.8), and (k8, . . . , k15) as “final key” (cor-

responding to k
(1)).

Then α(a) = a3, β(c) = c0 + c1 + c3, and κ(k) = α(k0, . . . , k7) +
β(k8, . . . , k15) = k3 + k8 + k9 + k11. Hence the target relation is

k3 + k8 + k9 + k11 = a3 + c0 + c1 + c3.

We use the key k = 1001011000101110 whose relevant bit is k3 + k8 +
k9 + k11 = 1, and generate five random pairs of plaintext and ciphertext,
see Table 5.11. We see that for this example Matsui’s algorithm guesses the
relevant key bit correctly with no dissentient.
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a a3 c c0 + c1 + c3 estimate
00011110 1 00000010 0 1
00101100 0 00111111 1 1
10110010 1 01011101 0 1
10110100 1 01010000 0 1
10110101 1 01010111 0 1

Table 5.11: Calculations for example D


