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5.8 Systematic Search for Linear Relations

The search for useful linear relations over several rounds has no general
elegant solution. The published examples often use linear paths that more
or less appear from nowhere, and it is not evident that they are the best
ones.

Let n be the block length of the cipher, and r, the number of rounds.
Then for each round the choice is between 2n linear formes, making a total of
2n(r+1) choices. This number also specifies the cost of determining the best
relation by complete search. There are some simplifications that however
don’t reduce the order of magnitude of the cost:

• In the first round consider only linear forms that activate only one
S-box.

• Then choose the next linear form such that it activates the least possi-
ble number of S-boxes of the next round (with high, but not necessarily
maximum potential).

• If one of the relations in a linear path has probability 1
2 , or I/O-

correlation 0, then the total I/O-correlation is 0 by multiplicativity,
and this path may be neglected. The same is true componentwise if
the linear forms split among the S-boxes of the respective round. How-
ever this negligence could introduce errors since we deal with average
probabilities not knowing the key-dependent ones.

For our 2-round example with Mini-Lucifer the systematic search is fea-
sible by pencil and paper or by a Sage or Python script. Our example has
the following characteristics:

• α = (α1,α2) with α1 =̂ 1 =̂ 0001 and α2 =̂ 0 =̂ 0000 (α1 was formerly
denoted α. Now for uniformity we make both components of all linear
forms explicit and index them by 1 and 2.)

• β = (β1,β2) with β1 =̂ 13 =̂ 1101 and β2 =̂ 0 =̂ 0000

• β
� = (β�

1,β
�
2) with β

�
1 =̂ 1 =̂ 0001, β�

2 =̂ 12 =̂ 1100

• γ = (γ1, γ2) with γ1 =̂ 13 =̂ 1101, γ2 =̂ 6 =̂ 0110

• τ1 =
3
4 , τ

�
2 =

3
4 , τ

��
2 = 1

2 , τ2 =
3
8 , τ = 9

32 , p = 41
64 = 0, 640625

• c0 + c1 + c3 + c5 + c6
p
≈ a3 + k0 + k1 + k5 + k6 + k11 + k12 + k13

An alternative choice of γ2 is γ2 =̂ 14 =̂ 1110; this yields a linear path with
the characteristics

• α =̂ (1, 0), β =̂ (13, 0), β� =̂ (1, 12), γ =̂ (13, 14)
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– τ = − 9
32 , p = 23

64 = 0, 359375

– c0+c1+c3+c4+c5+c6
p
≈ a3+k0+k1+k4+k5+k6+k11+k12+k13

The systematic search finds two even “better” linear paths, characterized
by

• α =̂ (8, 0), β =̂ (8, 0), β� =̂ (1, 0), γ =̂ (13, 0)

– τ = −3
8 , p = 5

16 = 0, 3125

– c0 + c1 + c3
p
≈ a0 + k1 + k3 + k11

• α =̂ (15, 0), β =̂ (8, 0), β� =̂ (1, 0), γ =̂ (13, 0)

– τ = −3
8 , p = 5

16 = 0, 3125

– c0 + c1 + c3
p
≈ a0 + a1 + a2 + a3 + k2 + k11

that do not completely exhaust the potential of the single S-boxes but on
the other hand activate only one S-box of the second round, and thereby
show the larger potential λ = 9

64 . Thus we get a 95% success probability
with only

N =
3

λ
=

64

3
≈ 21

known plaintexts for determining one bit.
The designer of a cipher should take care that in each round the active

bits fan out over as many S-boxes as possible. The inventors of AES, Daemen
and Rijmen call this design approach “wide-trail strategy”. The design of
AES strengthens this effect by involving a linear map instead of a mere
permutation, thereby replacing the “P” of an SP-network by an “L”.

Figure 5.11 shows an example of a linear path with all its ramifications.

Example (Continued)

For an illustration of the procedure we generate 25 pairs of known plaintexts
and corresponding ciphertexts using the key k =̂ 1001011000101110. The
target key bits are

b0 = k0 + k1 + k5 + k6 + k11 + k12 + k13

b1 = k0 + k1 + k4 + k5 + k6 + k11 + k12 + k13

b2 = k1 + k3 + k11

b3 = k2 + k11

that we know in cheat mode are b0 = 1, b1 = 1, b2 = 1, b3 = 0. We use all
four good relations at the same time without fearing the possible reduction
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of the success probability. All of these relations assert the probable equality
of the bits

b0
p
≈ c0 + c1 + c3 + c5 + c6 + a3

b1
p
≈ 1 + c0 + c1 + c3 + c4 + c5 + c6 + a3

b2
p
≈ 1 + c0 + c1 + c3 + a0

b3
p
≈ 1 + c0 + c1 + c3 + a0 + a1 + a2 + a3

each with its individual corresponding probability p. For the last three of
these sums we have to take the complementary bits since the corresponding
I/O-correlations are negative (the probabilities are <

1
2). This is done by

adding the bit 1.
Table 5.13 shows the results for these plaintext-ciphertext pairs. As we

see our guess is correct for all four bits.
As a consequence of our analysis we get a system of four linear equations

for the 16 unknown key bits:

1 = k0 + k1 + k5 + k6 + k11 + k12 + k13

1 = k0 + k1 + k4 + k5 + k6 + k11 + k12 + k13

1 = k1 + k3 + k11

0 = k2 + k11

that allow us to reduce the number of keys for an exhaustion from 216 =
65536 to 212 = 4096. Note the immediate simplifications of the system:
k11 = k2 from the last equation, and k4 = 0 from the first two.

As a cross-check we run some more simulations. The next four yield

• 15, 16, 19, 16

• 15, 16, 13, 17

• 15, 20, 19, 17

• 19, 19, 20, 18

correct guesses, and so on. Only run number 10 produced a wrong bit (the
second one):

• 17, 12, 14, 17

then again run number 25. Thus empirical evidence suggests a success prob-
ability of at least 90% in this scenario.
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nr plaintext ciphertext b0 b1 b2 b3

1 00001111 00001010 1 1 1 1
2 00010001 11001110 1 1 1 0
3 00010110 11001001 1 1 1 0
4 00111101 10110010 0 1 1 1
5 01000000 11100111 0 1 1 0
6 01001000 01010111 0 1 1 0
7 01001100 11101010 1 1 1 0
8 01001101 01011100 1 1 1 0
9 01001111 01111010 1 1 1 0
10 01100111 00110011 0 1 0 0
11 10000011 11110100 0 1 1 1
12 10010011 01101011 1 1 1 0
13 10011000 01100111 0 1 1 0
14 10101011 11011001 1 1 1 0
15 10110001 11001000 1 1 0 0
16 10110010 10100100 1 0 1 1
17 10110110 11000100 0 1 0 0
18 10111001 11000001 1 0 0 0
19 10111101 10111111 1 1 0 0
20 11000100 01001111 1 1 1 0
21 11000111 00111111 1 1 1 0
22 11011111 11011010 1 1 1 1
23 11100000 11101110 0 0 0 0
24 11100100 01110011 1 0 0 0
25 11110101 11110101 1 0 1 0

true bit: 1 1 1 0
correct guesses: 17 20 18 20

Table 5.13: Plaintext/ciphertext pairs for Mini-Lucifer
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Analysis over Four Rounds

Now let’s explore how an increasing number of rounds impedes linear crypt-
analysis.

Consider the toy cipher Mini-Lucifer over four rounds. Searching an op-
timal linear path over four rounds is somewhat expensive, so we content
ourselves with extending the best example from the two round case, the
third one, over two additional rounds. Slightly adapting the notation we
get:

• for the first round β0 = α =̂ (8, 0) and β1 =̂ (8, 0) (the “old” β) with
τ1 = −1

2 ,

• for the second round (applying the permutation P to β1) β
�
1 =̂ (1, 0)

and β2 =̂ (13, 0) (the “old” γ) with τ2 =
3
4 ,

• for the third round β
�
2 =̂ (1, 12) and β3 =̂ (13, 6) with τ3 =

3
8 ,

• for the fourth round β
�
3 =̂ (5, 13) and β = β4 =̂ (3, 12) (the “new” β)

with τ4 = −1
4 .

Figure 5.11 shows this linear path with its ramifications.
The repeated round keys we used are not independent. Therefore multi-

plicativity of I/O-correlations is justified by the rule of thumb only yielding
an approximate value for the I/O-correlation of the linear relation (α,β)
over all of the four rounds:

τ ≈ 1

2
· 3
4
· 3
8
· 1
4
=

9

256
≈ 0, 035.

The other characteristics are

p ≈ 265

512
≈ 0, 518, λ ≈ 81

65536
≈ 0, 0012, N ≈ 65536

27
≈ 2427,

the last one being the number of needed known plaintexts for a 95% success
probability.

Comparing this with the cost of exhaustion over all 65536 possible keys
we seem to have gained an advantage. However there are only 256 different
possible plaintexts all together. So linear cryptanalysis completely lost its
sense by the increased number of rounds.
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Figure 5.11: A linear path with ramifications (“trail”). For S the linear form
in the range is chosen (for high potential), indicated by a red dot. For P the
linear form in the range results by applying the permutation.


