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with κ2(k(2))
p2≈ α2(c(1)) + β2(c(2))

Figure 5.5: General two-round cipher

5.4 Example B: A Two-Round Cipher

As a next step we iterate the round map

f : Fn
2 × Fq

2 −→ Fn
2

of a bitblock cipher over two rounds using round keys k(i) ∈ Fq
2 as illustrated

in Figure 5.5.

Remark In a certain sense example A already was a two-round cipher since
we used two partial keys. Adding one more S-box at the right side of
Figure 5.3 would be cryptologically irrelevant, because this non-secret
part of the algorithm would be known to the cryptanalyst who simply
could “strip it off” (that is, apply its inverse to the cipher text) and be
left with example A. In a similar way we could interpret example B as a
three-round cipher. However this would be a not so common counting
of rounds.

We consider linear relations

κ1(k
(1))

p1≈ α1(c
(0)) + β1(c

(1))

with probability p1, I/O-correlation τ1 = 2p1 − 1, and potential λ1 = τ
2
1 ,

and
κ2(k

(2))
p2≈ α2(c

(1)) + β2(c
(2))
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with probability p2, I/O-correlation τ2 = 2p2−1, and potential λ2 = τ
2
2 . We

can combine these two linear relations if α2 = β1, thereby getting a linear
relation for some key bits expressed by the (known) plaintext c(0) = a and
the ciphertext c(2) = c,

κ1(k
(1)) + κ2(k

(2))
p
≈ α1(c

(0)) + β2(c
(2)),

that holds with a certain probability p, and has I/O-correlation τ and po-
tential λ, that in general depend on k = (k(1), k(2)) and are difficult to de-
termine. Therefore we again consider a simplified example B, see Figure 5.6.
Encryption is done step by step by the formulas

b
(0) = a+k

(0)
, a

(1) = f1(b
(0)), b(1) = a

(1)+k
(1)

, a
(2) = f2(b

(1)), c = a
(2)+k

(2)
.

(Here f1 is given by the S-box S0, and f2, by the S-box S1 that could be
identical with S0. Note that we allow that the round functions of the differ-
ent rounds differ. The reason is that usually the round function consists of
several parallel S-boxes and the permutations direct an input bit through
different S-boxes on its way through the rounds, see Section 5.7.)

As for example A adding some key bits after the last round prevents
the “stripping off” of f2. Comparing example B with the general settings in
Chapter 2 we have:

• key length l = 3n, key space F3n
2 , and keys of the form k =

(k(0), k(1), k(2)) with k
(0)

, k
(1)

, k
(2) ∈ Fn

2 .

• Encryption is defined by the map

F : Fn
2 × Fn

2 × Fn
2 × Fn

2 −→ Fn
2 ,

(a, k(0), k(1), k(2)) �→ f2(f1(a+ k
(0)) + k

(1)) + k
(2)

.

• The linear form κ: Fn
2 × Fn

2 × Fn
2 −→ F2 is given by

κ(k(0), k(1), k(2)) = α(k(0)) + β(k(1)) + γ(k(2)).

Here (α, β) is a linear relation for f1 with probability p1, I/O-correlation
τ1, and potential λ1, and (β, γ), a linear relation for f2 with probability p2,
I/O-correlation τ2, and potential λ2 (the same β since we want to combine
the linear relations), where

p1 =
1

2n
·#{x ∈ Fn

2 | β ◦ f1(x) = α(x)}

p2 =
1

2n
·#{y ∈ Fn

2 | γ ◦ f2(y) = β(y)}
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Figure 5.6: Example B

With the notations of Figure 5.6 we have

γ(c) = γ(a(2)) + γ(k(2))
p2≈ β(b(1)) + γ(k(2)) = β(a(1)) + β(k(1)) + γ(k(2))

p1≈ α(b(0)) + β(k(1)) + γ(k(2)) = α(a) + α(k(0)) + β(k(1)) + γ(k(2))

Hence we get a linear relation for the key bits as a special case of Equation (1)
in the form

α(k(0)) + β(k(1)) + γ(k(2))
p
≈ α(a) + γ(c)

with a certain probability p that is defined by the formula

p = pF,α,β,γ(k)

=
1

2n
·#{a ∈ Fn

2 | α(k(0)) + β(k(1)) + γ(k(2)) = α(a) + γ(F (a, k))}.

We try to explicitly determine p. As for the one-round case we first ask how
p depends on k. Insert the definition of F (a, k) into the defining equation
inside the set brackets. Then γ(k(2)) cancels out and we are left with

pF,α,β,γ(k) =
1

2n
·#{a ∈ Fn

2 |α(k(0)+a)+β(k(1)) = γ(f2(k
(1)+f1(k

(0)+a)))}.

This is independent of k(2), and for all k(0) assumes the same value

pF,α,β,γ(k) =
1

2n
·#{x ∈ Fn

2 | α(x) = β(k(1)) + γ(f2(k
(1) + f1(x)))}

because x = k
(0) + a runs through Fn

2 along with a. This value indeed
depends on k, but only on the middle component k(1). Now form the mean
value p̄ := pF,α,β,γ over all keys:

p̄ =
1

22n
·#{(x, k(1)) ∈ F2n

2 | α(x) = β(k(1)) + γ(f2(k
(1) + f1(x)))}.
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Inside the brackets we see the expression γ(f2(k(1) + f1(x))), and we know:

γ(f2(k
(1) + f1(x))) =

�
β(k(1) + f1(x)) with probability p2,

1 + β(k(1) + f1(x)) with probability 1− p2.

Here “probability p2” means that the statement is true for p2 · 22n of all
possible (x, k(1)) ∈ F2n

2 . Substituting this we get

p̄ =
1

22n
·
�
p2 ·#{(x, k(1)) ∈ F2n

2 | α(x) = β(f1(x))}

+(1− p2) ·#{(x, k(1)) ∈ F2n
2 | α(x) �= β(f1(x))}

�

where now the defining equations of both sets are also independent of k(1).
We recognize the definition of p1 and substitute it getting

p̄ = p1p2 + (1− p1)(1− p2) = 2p1p2 − p1 − p2 + 1.

This formula looks much more beautiful if expressed in terms of the I/O-
correlations τ̄ = 2p̄− 1 and τi = 2pi − 1 for i = 1 and 2:

τ̄ = 2p̄− 1 = 4p1p2 − 2p1 − 2p2 + 1 = (2p1 − 1)(2p2 − 1) = τ1τ2.

In summary we have proved:

Proposition 6 For example B we have:

(i) The probability pF,α,β,γ(k) depends only on the middle component k(1)

of the key k = (k(0), k(1), k(2)) ∈ Fn
2 × Fn

2 × Fn
2 .

(ii) The mean value of these probabilities over all keys k is pF,α,β,γ =
p̄ = 2p1p2 − p1 − p2 + 1.

(iii) The I/O-correlations and the potentials are multiplicative:

τF,α,β,γ = τ1τ2 and λF,α,β,γ = λ1λ2.

In Matsui’s test we face the decision whether to use the linear relation
or its negation for estimating a bit. We can’t do better than use the mean
value pF,α,β,γ since the key and the true probability pF,α,β,γ(k) are unknown.
This could be an error since these two probabilities might lie on different
sides of 1

2 .

Example

Let n = 4, S0 as in example A, and S1 as given in Table 5.8 (in different
order) as transition from column b

(1) to column a
(2). (By the way this is

the second S-box of Lucifer.) Consider the linear forms α =̂ 0001 and β =̂
1101 as before with p1 = 7

8 , τ1 = 3
4 , λ1 = 9

16 . Furthermore let γ =̂ 1100.
Then the linear relation for f2 defined by (β, γ) (see Table 5.9, row index
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a b
(0)

a
(1)

b
(1)

a
(2)

c β(b(1)) γ(a(2)) α(a) + γ(c)
0000 1000 0010 0011 1001 1111 1 1 0
0001 1001 0110 0111 0100 0010 0 1 1
0010 1010 0011 0010 1110 1000 0 0 1
0011 1011 0001 0000 0111 0001 0 1 1
0100 1100 1001 1000 1100 1010 1 0 1
0101 1101 0100 0101 1011 1101 0 1 1
0110 1110 0101 0100 0011 0101 1 0 1
0111 1111 1000 1001 1101 1011 0 0 0
1000 0000 1100 1101 1111 1001 1 0 1
1001 0001 1111 1110 1000 1110 0 1 1
1010 0010 0111 0110 0000 0110 1 0 1
1011 0011 1010 1011 1010 1100 0 1 1
1100 0100 1110 1111 0101 0011 1 1 0
1101 0101 1101 1100 0110 0000 0 1 1
1110 0110 1011 1010 0001 0111 1 0 1
1111 0111 0000 0001 0010 0100 1 0 0

Table 5.8: The data flow in the concrete example for B, and some linear
forms

13, column index 12) has probability p2 = 1
4 , I/O-correlation τ2 = −1

2 , and
potential λ2 =

1
4 , the maximum possible value by Table 5.10. (Note that the

linear profile of S1 is more uniform than that of S0.)
As concrete round keys take k

(0) = 1000, k(1) = 0001—as before—,
and k

(2) = 0110. We want to gain the bit α(k(0))+β(k(1))+γ(k(2)) (that in
cheat mode we know is 0). Since τ1τ2 < 0 in the majority of cases α(a)+γ(c)
should give the complementary bit 1. Table 5.8 shows that in 12 of 16 cases
this prediction is correct. Therefore 1 − p = 3

4 , p = 1
4 , τ = −1

2 , λ = 1
4 .

Remember that this value depends on the key component k
(1). In fact it

slightly deviates from the mean value

p̄ = 2 · 7
8
· 1
4
− 7

8
− 1

4
+ 1 =

7

16
− 14

16
− 4

16
+

16

16
=

5

16
.

Calculating the variation of the probability as function of the partial key
k
(1) we get the values 1

4 and 3
8 each 8 times, all lying on the “correct side”

of 1
2 and having the correct mean value 5

16 .
There are other “paths” from α to γ—we could insert any β in between.

Calculating the mean probabilities yields—besides the already known 5
16—

three times 15
32 , eleven times exactly 1

2 , and even a single 17
32 that lies on the

“wrong” side of 1
2 . Thus only the one case we explicitly considered is really

good.
As an alternative concrete example take β =̂ 0001. Here λ1 =

1
16 , p1 =

3
8 ,
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 16 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
1 8 10 8 10 8 6 12 10 10 4 6 8 10 8 10 8
2 8 6 4 10 6 8 6 8 8 10 4 6 10 8 10 8
3 8 8 8 8 6 6 6 6 10 6 6 10 4 8 8 12
4 8 8 8 4 8 8 8 4 6 6 6 10 10 10 10 6
5 8 6 8 10 4 6 8 6 8 6 12 6 8 10 8 6
6 8 10 12 10 6 12 6 8 10 8 6 8 8 10 8 6
7 8 8 8 12 10 10 10 6 4 8 8 8 6 10 10 10
8 8 8 6 10 10 6 8 8 10 10 8 12 8 12 6 6
9 8 6 6 8 6 12 8 10 8 6 10 12 10 8 8 10
10 8 6 6 8 12 10 6 8 10 4 8 6 6 8 8 6
11 8 4 10 10 8 8 10 6 8 8 6 10 8 4 6 6
12 8 8 6 6 6 10 12 8 8 8 6 6 6 10 4 8
13 8 10 6 8 6 8 8 10 6 8 8 10 4 6 10 4
14 8 10 6 8 8 10 10 4 12 10 10 8 8 6 10 8
15 8 4 10 6 8 8 10 10 10 10 8 8 6 10 12 8

Table 5.9: Approximation table of the S-box S1 of Lucifer. Row and column
indices are linear forms represented by integers. For the probabilities divide
by 16.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1

16 0 1
16 0 1

16
1
4

1
16

1
16

1
4

1
16 0 1

16 0 1
16 0

2 0 1
16

1
4

1
16

1
16 0 1

16 0 0 1
16

1
4

1
16

1
16 0 1

16 0
3 0 0 0 0 1

16
1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
4 0 0 1

4
4 0 0 0 1

4 0 0 0 1
4

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

5 0 1
16 0 1

16
1
4

1
16 0 1

16 0 1
16

1
4

1
16 0 1

16 0 1
16

6 0 1
16

1
4

1
16

1
16

1
4

1
16 0 1

16 0 1
16 0 0 1

16 0 1
16

7 0 0 0 1
4

1
16

1
16

1
16

1
16

1
4 0 0 0 1

16
1
16

1
16

1
16

8 0 0 1
16

1
16

1
16

1
16 0 0 1

16
1
16 0 1

4 0 1
4

1
16

1
16

9 0 1
16

1
16 0 1

16
1
4 0 1

16 0 1
16

1
16

1
4

1
16 0 0 1

16
10 0 1

16
1
16 0 1

4
1
16

1
16 0 1

16
1
4 0 1

16
1
16 0 0 1

16
11 0 1

4
1
16

1
16 0 0 1

16
1
16 0 0 1

16
1
16 0 1

4
1
16

1
16

12 0 0 1
16

1
16

1
16

1
16

1
4 0 0 0 1

16
1
16

1
16

1
16

1
4 0

13 0 1
16

1
16 0 1

16 0 0 1
16

1
16 0 0 1

16
1
4

1
16

1
16

1
4

14 0 1
16

1
16 0 0 1

16
1
16

1
4

1
4

1
16

1
16 0 0 1

16
1
16 0

15 0 1
4

1
16

1
16 0 0 1

16
1
16

1
16

1
16 0 0 1

16
1
16

1
4 0

Table 5.10: Linear profile of the S-box S1 of Lucifer. Row and column
indices are linear forms represented by integers.
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τ1 = −1
4 , and λ2 = 1

16 , p2 = 5
8 , τ2 = 1

4 . Hence τ = − 1
16 and p = 15

32 . The

target bit is α(k(0))+β(k(1))+γ(k(2))+1 = 1, and the success probability is
1− p = 17

32 . The mean value of p over all keys is 15
32 for this β in coincidence

with the key-specific value.


