

Figure 5.5: General two-round cipher

5.4 Example B: A Two-Round Cipher

As a next step we iterate the round map

$$
f: \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{q} \longrightarrow \mathbb{F}_{2}^{n}
$$

of a bitblock cipher over two rounds using round keys $k^{(i)} \in \mathbb{F}_{2}^{q}$ as illustrated in Figure 5.5.

Remark In a certain sense example A already was a two-round cipher since we used two partial keys. Adding one more S-box at the right side of Figure 5.3 would be cryptologically irrelevant, because this non-secret part of the algorithm would be known to the cryptanalyst who simply could "strip it off" (that is, apply its inverse to the cipher text) and be left with example A. In a similar way we could interpret example B as a three-round cipher. However this would be a not so common counting of rounds.

We consider linear relations

$$
\kappa_{1}\left(k^{(1)}\right) \stackrel{p_{1}}{\approx} \alpha_{1}\left(c^{(0)}\right)+\beta_{1}\left(c^{(1)}\right)
$$

with probability p_{1}, I/O-correlation $\tau_{1}=2 p_{1}-1$, and potential $\lambda_{1}=\tau_{1}^{2}$, and

$$
\kappa_{2}\left(k^{(2)}\right) \stackrel{p_{2}}{\approx} \alpha_{2}\left(c^{(1)}\right)+\beta_{2}\left(c^{(2)}\right)
$$

with probability p_{2}, I/O-correlation $\tau_{2}=2 p_{2}-1$, and potential $\lambda_{2}=\tau_{2}^{2}$. We can combine these two linear relations if $\alpha_{2}=\beta_{1}$, thereby getting a linear relation for some key bits expressed by the (known) plaintext $c^{(0)}=a$ and the ciphertext $c^{(2)}=c$,

$$
\kappa_{1}\left(k^{(1)}\right)+\kappa_{2}\left(k^{(2)}\right) \stackrel{p}{\approx} \alpha_{1}\left(c^{(0)}\right)+\beta_{2}\left(c^{(2)}\right)
$$

that holds with a certain probability p, and has I/O-correlation τ and potential λ, that in general depend on $k=\left(k^{(1)}, k^{(2)}\right)$ and are difficult to determine. Therefore we again consider a simplified example B, see Figure 5.6. Encryption is done step by step by the formulas
$b^{(0)}=a+k^{(0)}, a^{(1)}=f_{1}\left(b^{(0)}\right), b^{(1)}=a^{(1)}+k^{(1)}, a^{(2)}=f_{2}\left(b^{(1)}\right), c=a^{(2)}+k^{(2)}$.
(Here f_{1} is given by the S -box S_{0}, and f_{2}, by the S -box S_{1} that could be identical with S_{0}. Note that we allow that the round functions of the different rounds differ. The reason is that usually the round function consists of several parallel S-boxes and the permutations direct an input bit through different S-boxes on its way through the rounds, see Section 5.7.)

As for example A adding some key bits after the last round prevents the "stripping off" of f_{2}. Comparing example B with the general settings in Chapter 2 we have:

- key length $l=3 n$, key space $\mathbb{F}_{2}^{3 n}$, and keys of the form $k=$ $\left(k^{(0)}, k^{(1)}, k^{(2)}\right)$ with $k^{(0)}, k^{(1)}, k^{(2)} \in \mathbb{F}_{2}^{n}$.
- Encryption is defined by the map

$$
\begin{aligned}
& F: \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{n} \\
&\left(a, k^{(0)}, k^{(1)}, k^{(2)}\right) \mapsto \\
& f_{2}\left(f_{1}\left(a+k^{(0)}\right)+k^{(1)}\right)+k^{(2)}
\end{aligned}
$$

- The linear form κ : $\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}$ is given by

$$
\kappa\left(k^{(0)}, k^{(1)}, k^{(2)}\right)=\alpha\left(k^{(0)}\right)+\beta\left(k^{(1)}\right)+\gamma\left(k^{(2)}\right)
$$

Here (α, β) is a linear relation for f_{1} with probability p_{1}, I/O-correlation τ_{1}, and potential λ_{1}, and (β, γ), a linear relation for f_{2} with probability p_{2}, I/O-correlation τ_{2}, and potential λ_{2} (the same β since we want to combine the linear relations), where

$$
\begin{aligned}
& p_{1}=\frac{1}{2^{n}} \cdot \#\left\{x \in \mathbb{F}_{2}^{n} \mid \beta \circ f_{1}(x)=\alpha(x)\right\} \\
& p_{2}=\frac{1}{2^{n}} \cdot \#\left\{y \in \mathbb{F}_{2}^{n} \mid \gamma \circ f_{2}(y)=\beta(y)\right\}
\end{aligned}
$$

Figure 5.6: Example B

With the notations of Figure 5.6 we have

$$
\begin{gathered}
\gamma(c)=\gamma\left(a^{(2)}\right)+\gamma\left(k^{(2)}\right) \stackrel{p_{2}}{\approx} \beta\left(b^{(1)}\right)+\gamma\left(k^{(2)}\right)=\beta\left(a^{(1)}\right)+\beta\left(k^{(1)}\right)+\gamma\left(k^{(2)}\right) \\
\stackrel{p_{1}}{\approx} \alpha\left(b^{(0)}\right)+\beta\left(k^{(1)}\right)+\gamma\left(k^{(2)}\right)=\alpha(a)+\alpha\left(k^{(0)}\right)+\beta\left(k^{(1)}\right)+\gamma\left(k^{(2)}\right)
\end{gathered}
$$

Hence we get a linear relation for the key bits as a special case of Equation (1) in the form

$$
\alpha\left(k^{(0)}\right)+\beta\left(k^{(1)}\right)+\gamma\left(k^{(2)}\right) \stackrel{p}{\approx} \alpha(a)+\gamma(c)
$$

with a certain probability p that is defined by the formula

$$
\begin{aligned}
p & =p_{F, \alpha, \beta, \gamma}(k) \\
& =\frac{1}{2^{n}} \cdot \#\left\{a \in \mathbb{F}_{2}^{n} \mid \alpha\left(k^{(0)}\right)+\beta\left(k^{(1)}\right)+\gamma\left(k^{(2)}\right)=\alpha(a)+\gamma(F(a, k))\right\}
\end{aligned}
$$

We try to explicitly determine p. As for the one-round case we first ask how p depends on k. Insert the definition of $F(a, k)$ into the defining equation inside the set brackets. Then $\gamma\left(k^{(2)}\right)$ cancels out and we are left with
$p_{F, \alpha, \beta, \gamma}(k)=\frac{1}{2^{n}} \cdot \#\left\{a \in \mathbb{F}_{2}^{n} \mid \alpha\left(k^{(0)}+a\right)+\beta\left(k^{(1)}\right)=\gamma\left(f_{2}\left(k^{(1)}+f_{1}\left(k^{(0)}+a\right)\right)\right)\right\}$.
This is independent of $k^{(2)}$, and for all $k^{(0)}$ assumes the same value

$$
p_{F, \alpha, \beta, \gamma}(k)=\frac{1}{2^{n}} \cdot \#\left\{x \in \mathbb{F}_{2}^{n} \mid \alpha(x)=\beta\left(k^{(1)}\right)+\gamma\left(f_{2}\left(k^{(1)}+f_{1}(x)\right)\right)\right\}
$$

because $x=k^{(0)}+a$ runs through \mathbb{F}_{2}^{n} along with a. This value indeed depends on k, but only on the middle component $k^{(1)}$. Now form the mean value $\bar{p}:=p_{F, \alpha, \beta, \gamma}$ over all keys:

$$
\bar{p}=\frac{1}{2^{2 n}} \cdot \#\left\{\left(x, k^{(1)}\right) \in \mathbb{F}_{2}^{2 n} \mid \alpha(x)=\beta\left(k^{(1)}\right)+\gamma\left(f_{2}\left(k^{(1)}+f_{1}(x)\right)\right)\right\}
$$

Inside the brackets we see the expression $\gamma\left(f_{2}\left(k^{(1)}+f_{1}(x)\right)\right)$, and we know:

$$
\gamma\left(f_{2}\left(k^{(1)}+f_{1}(x)\right)\right)= \begin{cases}\beta\left(k^{(1)}+f_{1}(x)\right) & \text { with probability } p_{2} \\ 1+\beta\left(k^{(1)}+f_{1}(x)\right) & \text { with probability } 1-p_{2}\end{cases}
$$

Here "probability p_{2} " means that the statement is true for $p_{2} \cdot 2^{2 n}$ of all possible $\left(x, k^{(1)}\right) \in \mathbb{F}_{2}^{2 n}$. Substituting this we get

$$
\begin{aligned}
\bar{p} & =\frac{1}{2^{2 n}} \cdot\left[p_{2} \cdot \#\left\{\left(x, k^{(1)}\right) \in \mathbb{F}_{2}^{2 n} \mid \alpha(x)=\beta\left(f_{1}(x)\right)\right\}\right. \\
& \left.+\left(1-p_{2}\right) \cdot \#\left\{\left(x, k^{(1)}\right) \in \mathbb{F}_{2}^{2 n} \mid \alpha(x) \neq \beta\left(f_{1}(x)\right)\right\}\right]
\end{aligned}
$$

where now the defining equations of both sets are also independent of $k^{(1)}$. We recognize the definition of p_{1} and substitute it getting

$$
\bar{p}=p_{1} p_{2}+\left(1-p_{1}\right)\left(1-p_{2}\right)=2 p_{1} p_{2}-p_{1}-p_{2}+1
$$

This formula looks much more beautiful if expressed in terms of the I/Ocorrelations $\bar{\tau}=2 \bar{p}-1$ and $\tau_{i}=2 p_{i}-1$ for $i=1$ and 2 :

$$
\bar{\tau}=2 \bar{p}-1=4 p_{1} p_{2}-2 p_{1}-2 p_{2}+1=\left(2 p_{1}-1\right)\left(2 p_{2}-1\right)=\tau_{1} \tau_{2}
$$

In summary we have proved:
Proposition 6 For example B we have:
(i) The probability $p_{F, \alpha, \beta, \gamma}(k)$ depends only on the middle component $k^{(1)}$ of the key $k=\left(k^{(0)}, k^{(1)}, k^{(2)}\right) \in \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n}$.
(ii) The mean value of these probabilities over all keys k is $p_{F, \alpha, \beta, \gamma}=$ $\bar{p}=2 p_{1} p_{2}-p_{1}-p_{2}+1$.
(iii) The I / O-correlations and the potentials are multiplicative:

$$
\tau_{F, \alpha, \beta, \gamma}=\tau_{1} \tau_{2} \quad \text { and } \quad \lambda_{F, \alpha, \beta, \gamma}=\lambda_{1} \lambda_{2}
$$

In Matsui's test we face the decision whether to use the linear relation or its negation for estimating a bit. We can't do better than use the mean value $p_{F, \alpha, \beta, \gamma}$ since the key and the true probability $p_{F, \alpha, \beta, \gamma}(k)$ are unknown. This could be an error since these two probabilities might lie on different sides of $\frac{1}{2}$.

Example

Let $n=4, \mathrm{~S}_{0}$ as in example A , and S_{1} as given in Table 5.8 (in different order) as transition from column $b^{(1)}$ to column $a^{(2)}$. (By the way this is the second S-box of Lucifer.) Consider the linear forms $\alpha \hat{=} 0001$ and $\beta \hat{=}$ 1101 as before with $p_{1}=\frac{7}{8}, \tau_{1}=\frac{3}{4}, \lambda_{1}=\frac{9}{16}$. Furthermore let $\gamma \hat{=} 1100$. Then the linear relation for f_{2} defined by (β, γ) (see Table 5.9, row index

a	$b^{(0)}$	$a^{(1)}$	$b^{(1)}$	$a^{(2)}$	c	$\beta\left(b^{(1)}\right)$	$\gamma\left(a^{(2)}\right)$	$\alpha(a)+\gamma(c)$
0000	1000	0010	0011	1001	1111	1	1	0
0001	1001	0110	0111	0100	0010	0	1	1
0010	1010	0011	0010	1110	1000	0	0	1
0011	1011	0001	0000	0111	0001	0	1	1
0100	1100	1001	1000	1100	1010	1	0	1
0101	1101	0100	0101	1011	1101	0	1	1
0110	1110	0101	0100	0011	0101	1	0	1
0111	1111	1000	1001	1101	1011	0	0	0
1000	0000	1100	1101	1111	1001	1	0	1
1001	0001	1111	1110	1000	1110	0	1	1
1010	0010	0111	0110	0000	0110	1	0	1
1011	0011	1010	1011	1010	1100	0	1	1
1100	0100	1110	1111	0101	0011	1	1	0
1101	0101	1101	1100	0110	0000	0	1	1
1110	0110	1011	1010	0001	0111	1	0	1
1111	0111	0000	0001	0010	0100	1	0	0

Table 5.8: The data flow in the concrete example for B, and some linear forms

13, column index 12) has probability $p_{2}=\frac{1}{4}$, I/O-correlation $\tau_{2}=-\frac{1}{2}$, and potential $\lambda_{2}=\frac{1}{4}$, the maximum possible value by Table 5.10. (Note that the linear profile of S_{1} is more uniform than that of S_{0}.)

As concrete round keys take $k^{(0)}=1000, k^{(1)}=0001 —$ as before-, and $k^{(2)}=0110$. We want to gain the bit $\alpha\left(k^{(0)}\right)+\beta\left(k^{(1)}\right)+\gamma\left(k^{(2)}\right)$ (that in cheat mode we know is 0). Since $\tau_{1} \tau_{2}<0$ in the majority of cases $\alpha(a)+\gamma(c)$ should give the complementary bit 1 . Table 5.8 shows that in 12 of 16 cases this prediction is correct. Therefore $1-p=\frac{3}{4}, p=\frac{1}{4}, \tau=-\frac{1}{2}, \lambda=\frac{1}{4}$. Remember that this value depends on the key component $k^{(1)}$. In fact it slightly deviates from the mean value

$$
\bar{p}=2 \cdot \frac{7}{8} \cdot \frac{1}{4}-\frac{7}{8}-\frac{1}{4}+1=\frac{7}{16}-\frac{14}{16}-\frac{4}{16}+\frac{16}{16}=\frac{5}{16} .
$$

Calculating the variation of the probability as function of the partial key $k^{(1)}$ we get the values $\frac{1}{4}$ and $\frac{3}{8}$ each 8 times, all lying on the "correct side" of $\frac{1}{2}$ and having the correct mean value $\frac{5}{16}$.

There are other "paths" from α to γ-we could insert any β in between. Calculating the mean probabilities yields-besides the already known $\frac{5}{16}$ three times $\frac{15}{32}$, eleven times exactly $\frac{1}{2}$, and even a single $\frac{17}{32}$ that lies on the "wrong" side of $\frac{1}{2}$. Thus only the one case we explicitly considered is really good.

As an alternative concrete example take $\beta \hat{=} 0001$. Here $\lambda_{1}=\frac{1}{16}, p_{1}=\frac{3}{8}$,

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	16	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
1	8	10	8	10	8	6	12	10	10	4	6	8	10	8	10	8
2	8	6	4	10	6	8	6	8	8	10	4	6	10	8	10	8
3	8	8	8	8	6	6	6	6	10	6	6	10	4	8	8	12
4	8	8	8	4	8	8	8	4	6	6	6	10	10	10	10	6
5	8	6	8	10	4	6	8	6	8	6	12	6	8	10	8	6
6	8	10	12	10	6	12	6	8	10	8	6	8	8	10	8	6
7	8	8	8	12	10	10	10	6	4	8	8	8	6	10	10	10
8	8	8	6	10	10	6	8	8	10	10	8	12	8	12	6	6
9	8	6	6	8	6	12	8	10	8	6	10	12	10	8	8	10
10	8	6	6	8	12	10	6	8	10	4	8	6	6	8	8	6
11	8	4	10	10	8	8	10	6	8	8	6	10	8	4	6	6
12	8	8	6	6	6	10	12	8	8	8	6	6	6	10	4	8
13	8	10	6	8	6	8	8	10	6	8	8	10	4	6	10	4
14	8	10	6	8	8	10	10	4	12	10	10	8	8	6	10	8
15	8	4	10	6	8	8	10	10	10	10	8	8	6	10	12	8

Table 5.9: Approximation table of the S-box S_{1} of LUCIFER. Row and column indices are linear forms represented by integers. For the probabilities divide by 16 .

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	$\frac{1}{16}$	0	$\frac{1}{16}$	0	$\frac{1}{16}$	$\frac{1}{4}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{4}$	$\frac{1}{16}$	0	$\frac{1}{16}$	0	$\frac{1}{16}$	0
2	0	$\frac{1}{16}$	$\frac{1}{4}$	$\frac{1}{16}$	$\frac{1}{16}$	0	$\frac{1}{16}$	0	0	$\frac{1}{16}$	$\frac{1}{4}$	$\frac{1}{16}$	$\frac{1}{16}$	0	$\frac{1}{16}$	0
3	0	0	0	0	$\frac{1}{16}$	$\frac{1}{4}$	0	0	$\frac{1}{4}$							
4	0	0	0	$\frac{1}{4}$	0	0	0	$\frac{1}{4}$	$\frac{1}{16}$							
5	0	$\frac{1}{16}$	0	$\frac{1}{16}$	$\frac{1}{4}$	$\frac{1}{16}$	0	$\frac{1}{16}$	0	$\frac{1}{16}$	$\frac{1}{4}$	$\frac{1}{16}$	0	$\frac{1}{16}$	0	$\frac{1}{16}$
6	0	$\frac{1}{16}$	$\frac{1}{4}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{4}$	$\frac{1}{16}$	0	$\frac{1}{16}$	0	$\frac{1}{16}$	0	0	$\frac{1}{16}$	0	$\frac{1}{16}$
7	0	0	0	$\frac{1}{4}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{4}$	0	0	0	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$
8	0	0	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	0	0	$\frac{1}{16}$	$\frac{1}{16}$	0	$\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{16}$	$\frac{1}{16}$
9	0	$\frac{1}{16}$	$\frac{1}{16}$	0	$\frac{1}{16}$	$\frac{1}{4}$	0	$\frac{1}{16}$	0	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{4}$	$\frac{1}{16}$	0	0	$\frac{1}{16}$
10	0	$\frac{1}{16}$	$\frac{1}{16}$	0	$\frac{1}{4}$	$\frac{1}{16}$	$\frac{1}{16}$	0	$\frac{1}{16}$	$\frac{1}{4}$	0	$\frac{1}{16}$	$\frac{1}{16}$	0	0	$\frac{1}{16}$
11	0	$\frac{1}{4}$	$\frac{1}{16}$	$\frac{1}{16}$	0	0	$\frac{1}{16}$	$\frac{1}{16}$	0	0	$\frac{1}{16}$	$\frac{1}{16}$	0	$\frac{1}{4}$	$\frac{1}{16}$	$\frac{1}{16}$
12	0	0	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{4}$	0	0	0	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{4}$	0
13	0	$\frac{1}{16}$	$\frac{1}{16}$	0	$\frac{1}{16}$	0	0	$\frac{1}{16}$	$\frac{1}{16}$	0	0	$\frac{1}{16}$	$\frac{1}{4}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{4}$
14	0	$\frac{1}{16}$	$\frac{1}{16}$	0	0	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{16}$	$\frac{1}{16}$	0	0	$\frac{1}{16}$	$\frac{1}{16}$	0
15	0	$\frac{1}{4}$	$\frac{1}{16}$	$\frac{1}{16}$	0	0	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	0	0	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{4}$	0

Table 5.10: Linear profile of the S-box S_{1} of Lucifer. Row and column indices are linear forms represented by integers.
$\tau_{1}=-\frac{1}{4}$, and $\lambda_{2}=\frac{1}{16}, p_{2}=\frac{5}{8}, \tau_{2}=\frac{1}{4}$. Hence $\tau=-\frac{1}{16}$ and $p=\frac{15}{32}$. The target bit is $\alpha\left(k^{(0)}\right)+\beta\left(k^{(1)}\right)+\gamma\left(k^{(2)}\right)+1=1$, and the success probability is $1-p=\frac{17}{32}$. The mean value of p over all keys is $\frac{15}{32}$ for this β in coincidence with the key-specific value.

