6.2 The Arithmetic of the Base Field

For the description of AES we identify the 8 -dimensional \mathbb{F}_{2} vector space \mathbb{F}_{2}^{8} and the field \mathbb{F}_{256}. We specify the exact mapping in the following subsections.

Algebraic Representation of the Base Field

The simplest construction of a finite field, see Appendix A, is as a factor ring of the polynomial ring $\mathbb{F}_{p}[X]$ over its prime field \mathbb{F}_{p} by a principal ideal that is generated by an irreducible polynomial $h \in \mathbb{F}_{p}[X]$. The ideal $h \mathbb{F}_{p}[X]$ is prime, hence

$$
K:=\mathbb{F}_{p}[X] / h \mathbb{F}_{p}[X]
$$

is a finite field and has degree (= dimension) $n=\operatorname{deg} h$ over \mathbb{F}_{p}. For the identification of K with the vector space \mathbb{F}_{p}^{n} we identify the residue classes of the powers of X with the n unit vectors. So setting $x=X \bmod h$ we identify:

$$
x^{0}=1=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right), \quad x^{1}=x=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1 \\
0
\end{array}\right), \quad \ldots, \quad x^{n-1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right)
$$

If $h=X^{n}+a_{1} X^{n-1}+\cdots+a_{n-1} X+a_{n}$ (monic without loss of generality), then from $h \bmod h=0$ we get

$$
x^{n}=-a_{1} x^{n-1}-\cdots-a_{n-1} x-a_{n}
$$

in K. Moreover this equation shows how to express the residue class of an arbitrary polynomial f by the canonical basis $1, x, \ldots, x^{n-1}$. Algorithmically this amounts to the remainder of a polynomial division " f divided by h ".

For AES we use the polynomial

$$
h=X^{8}+X^{4}+X^{3}+X+1 \in \mathbb{F}_{2}[X] .
$$

Multiplication Table

The multiplication table for the basis $\left(1, x, \ldots, x^{n-1}\right)$ follows from the relation defined by h. In \mathbb{F}_{256} (for AES) we have

$$
x^{2} \cdot x^{7}=x^{9}=x \cdot x^{8}=x \cdot\left(x^{4}+x^{3}+x+1\right)=x^{5}+x^{4}+x^{2}+x
$$

Efficient inversion

The implementation of AES uses a complete value table of the S-box. This is efficient for we have to specify only 256 values.

