3 Approximation by Linear Relations

In this section we approach hidden linearity of a Boolean map by looking for linear combinations of the output bits that linearly depend on a linear combination of the input bits, at least for some arguments.

3.1 Transformation of indicator functions

Definition 1 For $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ the function $\vartheta_{f}: \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{q} \longrightarrow \mathbb{R}$,

$$
\vartheta_{f}(x, y):= \begin{cases}1, & \text { if } y=f(x) \\ 0 & \text { else }\end{cases}
$$

is called the indicator function of f.
Let's calculate the Walsh transform of an indicator function; we'll encounter the set

$$
L_{f}(u, v):=\left\{x \in \mathbb{F}_{2}^{n} \mid u \cdot x=v \cdot f(x)\right\}
$$

where the function $v \cdot f$ coincides with the linear form corresponding to u. The bigger $L_{f}(u, v)$, the closer is the linear approximation of f by (u, v).

$$
\begin{aligned}
\hat{\vartheta}_{f}(u, v) & =\sum_{x \in \mathbb{F}_{2}^{n}} \sum_{y \in \mathbb{F}_{2}^{q}} \vartheta_{f}(x, y)(-1)^{u \cdot x+v \cdot y} \\
& =\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{u \cdot x+v \cdot f(x)} \\
& =\# L_{f}(u, v)-\left(2^{n}-\# L_{f}(u, v)\right) .
\end{aligned}
$$

We have shown:

Proposition 1 For a Boolean map $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ the Walsh transform of the indicator function is $\hat{\vartheta}_{f}: \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{q} \longrightarrow \mathbb{R}$,

$$
\hat{\vartheta}_{f}(u, v)=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{u \cdot x+v \cdot f(x)}=2 \cdot \# L_{f}(u, v)-2^{n}
$$

In particular $-2^{n} \leq \hat{\vartheta}_{f} \leq 2^{n}$, and all the values of $\hat{\vartheta}_{f}$ are even.
The derivation of this proposition gives as an intermediate result:
Corollary 1 Let $\beta: \mathbb{F}_{2}^{q} \longrightarrow \mathbb{F}_{2}$ the linear form corresponding to v. Then

$$
\hat{\vartheta}_{f}(u, v)=\hat{\chi}_{\beta \circ f}(u) .
$$

Definition 2 For a Boolean map $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ the transformed function $\hat{\vartheta_{f}}: \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{q} \longrightarrow \mathbb{R}$ of the indicator function ϑ_{f} is called the (Walsh) spectrum of f.

Imagine the spectrum $\hat{\vartheta}_{f}$ of f as a $2^{n} \times 2^{q}$ matrix, whose rows are indexed by $u \in \mathbb{F}_{2}^{n}$ and whose columns are indexed by $v \in \mathbb{F}_{2}^{q}$, in the canonical order. By corollary 1 the columns are just the spectra of the Boolean functions $\beta \circ f$ for all the linear forms $\beta \in \mathcal{L}_{q}$.

Corollary 2 (Column sums of the spectrum) Let $v \in \mathbb{F}_{2}^{q}$. Then

$$
\begin{aligned}
\sum_{u \in \mathbb{F}_{2}^{n}} \hat{\vartheta}_{f}(u, v) & = \begin{cases}2^{n}, & \text { if } v \cdot f(0)=0 \\
-2^{n} & \text { else, }\end{cases} \\
\sum_{u \in \mathbb{F}_{2}^{n}} \hat{\vartheta}_{f}(u, v)^{2} & =2^{2 n}
\end{aligned}
$$

Proof. This follows from corollary 2 of the inversion formula in 2.2 and from corollary 1 together with Parseval's equation (proposition 4 in 2.3).

By proposition 5 in 2.4 we furthermore conclude:

$$
\max \left|\hat{\vartheta}_{f}(\bullet, v)\right|=\max \left|\hat{\chi}_{\beta \circ f}\right| \geq 2^{n / 2} \quad \text { for each vector } v \in \mathbb{F}_{2}^{q}
$$

where equality holds, if and only if $\beta \circ f$ is bent. Hence:
Corollary 3 Let $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ be a Boolean map. Then

$$
\max _{\mathbb{F}_{2}^{n} \times\left(\mathbb{F}_{2}^{q}-\{0\}\right)}\left|\hat{\vartheta}_{f}\right| \geq 2^{n / 2}
$$

Equality holds, if and only if $\beta \circ f$ is bent for each linear form $\beta: \mathbb{F}_{2}^{q} \longrightarrow \mathbb{F}_{2}$, $\beta \neq 0$.

Definition 3 (Nyberg, Eurocrypt 91) A Boolean map $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ is called bent, if for every linear form $\beta: \mathbb{F}_{2}^{q} \longrightarrow \mathbb{F}_{2}, \beta \neq 0$, the function $\beta \circ f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}$ is bent.

Remarks

1. Because $L_{f}(0,0)=\mathbb{F}_{2}^{n}$ we have $\hat{\vartheta}_{f}(0,0)=2^{n}$. Therefore every f attains the upper bound in proposition 1 ; only some f attain the lower bound.
2. If $u \neq 0$, we have

$$
\hat{\vartheta}_{f}(u, 0)=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{u \cdot x}=0
$$

Therefore the first column of the spectrum, "column 0 ", is $\left(2^{n}, 0, \ldots, 0\right)^{t}$.
3. By the corollaries of proposition 1 a Boolean map is bent, if and only if

$$
\hat{\vartheta}_{f}(u, v)= \pm 2^{n / 2} \quad \text { for all } u \in \mathbb{F}_{2}^{n}, v \in \mathbb{F}_{2}^{q}-\{0\}
$$

i. e., if the spectrum (outside of column 0) takes the values $\pm 2^{n / 2}$ only.
4. If a bent map $\mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ exists, n is even by corollary 1 of proposition 5 in section 2.4.

Exercise 1 Let $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{n}$ be bijective. Show that the spectrum $\hat{\vartheta}_{f^{-1}}$ is given by the transposed matrix of $\hat{\vartheta}_{f}$.

Exercise 2 Compare the spectrum in the case $q=1$ with the spectrum of a Boolean function in the sense of section 2.

Note Nyberg, Eurocrypt 91, has shown: A bent map $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ exists, if and only if n even and $\geq 2 q$. The proof is slightly outside this tutorial. (It's contained in the German version.)

Let $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ be affine, $f(x)=A x+b$ where $A \in M_{n, q}\left(\mathbb{F}_{2}\right)$ and $b \in \mathbb{F}_{2}^{q}$. Then

$$
L_{f}(u, v)=\left\{x \in \mathbb{F}_{2}^{n} \mid u^{t} x=v^{t} A x+v^{t} b\right\}=\left\{x \in \mathbb{F}_{2}^{n} \mid\left(u^{t}-v^{t} A\right) x=v^{t} b\right\} .
$$

This is the kernel of the linear form $u^{t}-v^{t} A$, if $v^{t} b=0$. It is a parallel hyperplane, if $v^{t} b=1$. We distinguish the cases

$$
\# L_{f}(u, v)= \begin{cases}2^{n}, & \text { if } v^{t} A=u^{t} \text { and } v^{t} b=0 \\ 0, & \text { if } v^{t} A=u^{t} \text { and } v^{t} b=1 \\ 2^{n-1}, & \text { if } v^{t} A \neq u^{t}\end{cases}
$$

Hence

$$
\hat{\vartheta}_{f}(u, v)=2 \cdot \# L_{f}(u, v)-2^{n}= \begin{cases}2^{n}, & \text { if } v^{t} A=u^{t} \text { and } v^{t} b=0 \\ -2^{n}, & \text { if } v^{t} A=u^{t} \text { and } v^{t} b=1 \\ 0, & \text { if } v^{t} A \neq u^{t}\end{cases}
$$

Therefore the spectrum contains exactly one entry $\pm 2^{n}$ in each column (i. e. for constant v), and only zeroes else.

If vice versa the spectrum of f looks like this, then $\beta \circ f$ is affine for all linear forms $\beta: \mathbb{F}_{2}^{q} \longrightarrow \mathbb{F}_{2}$, hence f is affine. We have shown:

Proposition 2 The map $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ is affine, if and only if each column of the spectrum $\hat{\vartheta}_{f}$ of f has exactly one entry $\neq 0$.

Exercise 3 Calculate the spectrum of the "half adder" $f: \mathbb{F}_{2}^{2} \longrightarrow \mathbb{F}_{2}^{2}$, given by the component ANFs $f_{1}=T_{1} T_{2}$ and $f_{2}=T_{1}+T_{2}$. Do the same for the "full adder" $f: \mathbb{F}_{2}^{3} \longrightarrow \mathbb{F}_{2}^{2}$, given by the component ANFs $f_{1}=T_{1} T_{2}+T_{1} T_{3}+T_{2} T_{3}$ and $f_{2}=T_{1}+T_{2}+T_{3}$.

Exercise 4 How does the spectrum of a Boolean map from \mathbb{F}_{2}^{n} to \mathbb{F}_{2}^{q} behave under affine transformations of its domain and range?

3.2 Balanced maps and the preimage counter

From the last section we know the first column of the spectrum. Now let's look at the first row. We'll meet the preimage counter

$$
\nu_{f}(y):=\# f^{-1}(y)=\#\left\{x \in \mathbb{F}_{2}^{n} \mid f(x)=y\right\}=\sum_{x \in \mathbb{F}_{2}^{n}} \vartheta_{f}(x, y)
$$

We have

$$
\begin{aligned}
\hat{\vartheta}_{f}(0, v) & =\sum_{x \in \mathbb{F}_{2}^{n}} \sum_{y \in \mathbb{F}_{2}^{q}} \vartheta_{f}(x, y)(-1)^{v \cdot y} \\
& =\sum_{y \in \mathbb{F}_{2}^{q}} \nu_{f}(y)(-1)^{v \cdot y} \\
& =\hat{\nu_{f}}(v)
\end{aligned}
$$

Summing up we get

$$
\sum_{v \in \mathbb{F}_{2}^{q}} \hat{\vartheta}_{f}(0, v)=\sum_{v \in \mathbb{F}_{2}^{q}} \hat{\nu}_{f}(v)=2^{q} \cdot \nu_{f}(0)
$$

by 2.2 . Note that $\nu_{f}(0)$ is the number of zeroes of f. We have shown:
Lemma 1 Let $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ be a Boolean map. Then

$$
\begin{aligned}
\hat{\vartheta}_{f}(0, v) & =\hat{\nu}_{f}(v), \\
\sum_{v \in \mathbb{F}_{2}^{q}-\{0\}} \hat{\vartheta}_{f}(0, v) & =2^{q} \cdot \nu_{f}(0)-2^{n} .
\end{aligned}
$$

Exercise 1 Let $V(f)=\left\{x \in \mathbb{F}_{2}^{n} \mid f(x)=0\right\}$ be the zero set of f. Show that

$$
\sum_{v \in \mathbb{F}_{2}^{q}} \hat{\vartheta}_{f}(u, v)=2^{q} \cdot \sum_{x \in V(f)}(-1)^{u \cdot x}
$$

for each $u \in \mathbb{F}_{2}^{n}$. (Row sums of the spectrum.)
For cryptology one of the most important properties of Boolean functions is balancedness (that however has nothing to do with nonlinearity). Unbalanced maps give a nonuniform distribution of their output and facilitate statistical attacks.

Definition 4 A map $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ is called balanced, if all its fibers $f^{-1}(y)$ for $y \in \mathbb{F}_{2}^{q}$ have the same size.

Remarks

1. f is balanced, if and only if the preimage counter ν_{f} is constant.
2. If f is balanced, then f is surjective, in particular $n \geq q$, and the constant value of the preimage counter is $\nu_{f}=2^{n-q}$; if $n=q$, then exactly the bijective maps are balanced.
3. By remark 3 in section 2.1 and remark 2 above, f is balanced, if and only if $\hat{\nu}_{f}(0)=2^{n}$ and $\hat{\nu}_{f}(v)=0$ for $v \neq 0$. By lemma 1 this happens, if and only if

$$
\hat{\vartheta}_{f}(0, v)= \begin{cases}2^{n} & \text { for } v=0 \\ 0 & \text { else }\end{cases}
$$

In this way the balancedness is tied to the first row ("row 0") of the spectrum.
4. A Boolean function $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}$ is balanced, if it takes the values 0 und 1 each exactly 2^{n-1} times; in other words, if its truth table contains exactly 2^{n-1} zeroes, or if $d(f, 0)=2^{n-1}$. Corollary 2 in section 2.1, applied to the linear form 0 , yields that f is balanced, if and only if $\hat{\chi}_{f}(0)=0$.
5. Because the total number of all preimages is 2^{n}, we have

$$
\sum_{y \in \mathbb{F}_{2}^{q}} \nu_{f}(y)=2^{n}
$$

Exercise 2 Show that an affine map $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ is balanced, if and only if it is surjective.

Exercise 3 Let $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}$ be any Boolean function, and $\breve{f}: \mathbb{F}_{2}^{n+1} \longrightarrow$ \mathbb{F}_{2} defined by $\breve{f}\left(x_{0}, x_{1}, \ldots x_{n}\right)=x_{0}+f\left(x_{1}, \ldots x_{n}\right)$. Show that \breve{f} is balanced.

Proposition 3 (Seberry/Zhang/Zheng, Eurocrypt 94) A Boolean $\operatorname{map} f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ is balanced, if and only if for each linear form $\beta: \mathbb{F}_{2}^{q} \longrightarrow \mathbb{F}_{2}, \beta \neq 0$, the linear form $\beta \circ f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}$ is balanced.

Proof. If f is balanced, then obviously each component function $f_{1}, \ldots f_{q}$: $\mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}$ is balanced. An arbitrary linear form $\beta \neq 0$ can be transformed to the first coordinate function by a linear automorphism of \mathbb{F}_{2}^{q}; therefore $\beta \circ f$ is balanced too.

For the opposite direction we have to show, that the preimage counter is constant, $\nu_{f}=2^{n-q}$. By corollary 1 in section 3.1 we have $\hat{\vartheta}_{f}(0, v)=$ $\hat{\chi}_{v \cdot f}(0)=0$ for every $v \in \mathbb{F}_{2}^{q}-\{0\}$. Moreover $\hat{\vartheta}_{f}(0,0)=2^{n}$. Therefore the assertion follows from remark 3 .

We also can express the balancedness by the convolution square of the preimage counter ν_{f} :

Proposition 4 Let $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ be a Boolean map. Then the following statements are equivalent:
(i) f is balanced.
(ii) $\nu_{f} * \nu_{f}=2^{2 n-q}$ constant.
(iii) $\nu_{f} * \nu_{f}(0)=2^{2 n-q}$.

Proof. "(i) \Longrightarrow (ii)" is almost trivial:

$$
\nu_{f} * \nu_{f}(v)=\sum_{y \in \mathbb{F}_{2}^{q}} \nu_{f}(y) \nu_{f}(v+y)=2^{q} \cdot 2^{n-q} \cdot 2^{n-q}=2^{2 n-q}
$$

$"(\mathrm{ii}) \Longrightarrow$ (iii)" is the reduction to a special case.
$"($ iii $) \Longrightarrow$ (i)": We have

$$
\begin{aligned}
2^{2 n-q}=\nu_{f} * \nu_{f}(0) & =\sum_{y \in \mathbb{F}_{2}^{q}} \nu_{f}(y)^{2} \\
2^{n} & =\sum_{y \in \mathbb{F}_{2}^{q}} \nu_{f}(y)
\end{aligned}
$$

The Cauchy-Schwarz inequality yields

$$
2^{2 n}=\left[\sum_{y \in \mathbb{F}_{2}^{q}} 1 \cdot \nu_{f}(y)\right]^{2} \leq \sum_{y \in \mathbb{F}_{2}^{q}} 1^{2} \cdot \sum_{y \in \mathbb{F}_{2}^{q}} \nu_{f}(y)^{2}=2^{q} \cdot 2^{2 n-q}
$$

Since we have equality, $\nu_{f}(y)$ is a constant multiple of 1.

3.3 The linear profile

Let $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ be a Boolean map. In section 3.1 we introduced the sets $L_{f}(u, v)$ for $u \in \mathbb{F}_{2}^{n}$ and $v \in \mathbb{F}_{2}^{q}$. By proposition 1 we have

$$
\# L_{f}(u, v)=2^{n}-d(\alpha, \beta \circ f)=2^{n-1}+\frac{1}{2} \hat{\vartheta}_{f}(u, v)
$$

if α and β are the linear forms corresponding to u and v. We use the notation:

$$
\begin{aligned}
& p_{f}(u, v):=\frac{\# L_{f}(u, v)}{2^{n}}=1-\frac{d(\alpha, \beta \circ f)}{2^{n}}=\frac{1}{2}+\frac{\hat{\vartheta}_{f}(u, v)}{2^{n+1}}, \\
& \lambda_{f}(u, v):=\left(2 p_{f}(u, v)-1\right)^{2}=\frac{1}{2^{2 n}} \cdot \hat{\vartheta}_{f}(u, v)^{2} .
\end{aligned}
$$

Definition 5 The function

$$
\lambda_{f}: \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{q} \longrightarrow \mathbb{R}
$$

is called the linear profile of f. The quantities $p_{f}(u, v)$ and $\lambda_{f}(u, v)$ are called the probability and the potential of the linear relation $(u, v) \in \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{q}$ for f.

Note The use of the square in the definition of the linear profile follows a proposal of Matsui 1999. Unusual, but, as we shall see, useful too, is the normalization by the coefficient $\frac{1}{2^{2 n}}$.

Remarks

1. We have

$$
\begin{gathered}
0 \leq \lambda_{f}(u, v) \leq 1 \\
p_{f}(u, v)=\frac{1 \pm \sqrt{\lambda_{f}(u, v)}}{2}
\end{gathered}
$$

and by proposition 1 in 3.1 all values of λ_{f} are integer multiples of $\frac{1}{2^{2 n-2}}$.
2. Several properties of the linear profile immediately follow from the corresponding statements for the spectrum. The column 0 of the linear profile is

$$
\lambda_{f}(u, 0)= \begin{cases}1, & \text { if } u=0 \\ 0 & \text { else }\end{cases}
$$

All column sums of the linear profile are 1:

$$
\sum_{u \in \mathbb{F}_{2}^{n}} \lambda_{f}(u, v)=1
$$

In particular for each $v \in \mathbb{F}_{2}^{q}$ there is a $u \in \mathbb{F}_{2}^{n}$ such that $\lambda_{f}(u, v) \geq \frac{1}{2^{n}}$. Furthermore f is balanced, if and only if row 0 of the linear profile is $10 \ldots 0$, and f is bent, if and only if all columns except column 0 are constant $=\frac{1}{2^{n}}$.

Exercise 1 Write down the linear profile for all the maps where you formerly determined the spectrum.

The quantity

$$
\Lambda_{f}:=\max \left\{\lambda_{f}(u, v) \mid u \in \mathbb{F}_{2}^{n}, v \in \mathbb{F}_{2}^{q},(u, v) \neq 0\right\}
$$

denotes the maximal potential of a non trivial linear relation. The bigger Λ_{f}, the "closer" to linearity is f. Linear cryptanalysis uses Λ_{f} as its measure of linearity.

Definition 6 For a Boolean map $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ the quantity Λ_{f} is called the linear potential of f.

Remarks

1. Always $0 \leq \Lambda_{f} \leq 1$. If f is affine, then $\Lambda_{f}=1$.
2. We have

$$
\Lambda_{f}=\frac{1}{2^{2 n}} \cdot \max _{\left(\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{q}\right)-\{(0,0)\}} \hat{\vartheta}_{f}^{2}
$$

3. In the case $q=1$ we have

$$
\Lambda_{f}=\frac{1}{2^{2 n}} \cdot \max \hat{\chi}_{f}^{2}
$$

4. More generally for $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$

$$
\Lambda_{f}=\frac{1}{2^{2 n}} \cdot \max _{\beta \in \mathcal{L}_{q}-\{0\}} \hat{\chi}_{\beta \circ f}^{2}=\max _{\beta \in \mathcal{L}_{q}-\{0\}} \Lambda_{\beta \circ f}
$$

Exercise 2 Show that Λ_{f} is invariant under affine transformations of the range and domain of f.

Exercise 3 Show that $\Lambda_{f}=\Lambda_{f-1}$ if f is bijective.
From corollary 2 of proposition 1 we have:
Proposition 5 (Chabaud/Vaudenay, Eurocrypt 94) Let $f: \mathbb{F}_{2}^{n} \longrightarrow$ \mathbb{F}_{2}^{q} be a Boolean map. Then

$$
\Lambda_{f} \geq \frac{1}{2^{n}}
$$

equality holds, if and only if f is bent.

3.4 The nonlinearity of Boolean maps

Definition 7 (i) (Pieprzyk/Finkelstein 1988) The nonlinearity of a Boolean function $f \in \mathcal{F}_{n}$ is the Hamming distance

$$
\sigma_{f}:=d\left(f, \mathcal{A}_{n}\right)
$$

between f and the subspace of affine functions.
(ii) (Nyberg 1992) For a Boolean map $f: \mathbb{F}_{2}^{n} \longrightarrow F_{2}^{q}$ the nonlinearity is

$$
\sigma_{f}:=\min \left\{\sigma_{\beta \circ f} \mid \beta: \mathbb{F}_{2}^{q} \longrightarrow \mathbb{F}_{2} \text { affine, } \beta \neq 0\right\}
$$

Lemma 2 The nonlinearity of a Boolean function $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}$ is

$$
\sigma_{f}=2^{n-1}-\frac{1}{2} \max \left|\hat{\chi}_{f}\right|
$$

Proof. Let α be the linear form, $\bar{\alpha}$ the nonlinear affine function corresponding to $u \in \mathbb{F}_{2}^{n}$. Then by corollary 2 in 2.1

$$
\begin{aligned}
d(f, \alpha) & =2^{n-1}-\frac{1}{2} \hat{\chi}_{f}(u) \\
d(f, \bar{\alpha}) & =1-d(f, \alpha)=2^{n-1}+\frac{1}{2} \hat{\chi}_{f}(u) \\
d(f,\{\alpha, \bar{\alpha}\}) & =2^{n-1}-\frac{1}{2}\left|\hat{\chi}_{f}(u)\right|
\end{aligned}
$$

The assertion follows.

Proposition 6 The nonlinearity of a Boolean map $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ is

$$
\sigma_{f}=2^{n-1}-\frac{1}{2} \max \left|\hat{\vartheta}_{f}\right|
$$

where the maximum is taken over $\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{q}-\{(0,0)\}$.
Proof. This follows from lemma 2 and the corollary 1 in 3.1. (The points $(u, 0)$ don't affect the maximum).

Since the linear profile is $\lambda_{f}=\frac{1}{2^{2 n}} \hat{\vartheta}_{f}^{2}$, for the linear potential we conclude:

Corollary 1
 (i) $\sigma_{f}=2^{n-1} \cdot\left(1-\sqrt{\Lambda_{f}}\right), \quad \Lambda_{f}=\left(1-\frac{1}{2^{n-1}} \sigma_{f}\right)^{2}$.

(ii) (Meier/Staffelbach, Eurocrypt 89, for $q=1$)

$$
\sigma_{f} \leq 2^{n-1}-2^{\frac{n}{2}-1}
$$

where the equality holds, if and only if f is bent.

In particular the nonlinearity and the linear potential are equivalent measures.

Since σ_{f} is integer valued, we get better bounds for small n :

n	1	2	3	4	5	6	7	8	9
$\sigma_{f} \leq$	0	1	2	6	13	28	58	120	244

For $n=3$ this gives the improved lower bound $\Lambda_{f} \geq \frac{1}{4}$. For $n=5,7, \ldots$ the analogously improved bounds $\frac{9}{256}, \frac{9}{1024}, \ldots$ become more and more uninteresting.

Because $\chi_{f}(u)= \pm 2^{n / 2}$ for a bent function, from corollary 2 in 2.1 follows:

Corollary 2 If f is a bent function, and α affine, then

$$
d(f, \alpha)=2^{n-1} \pm 2^{\frac{n}{2}-1}
$$

Corollary 3 If f is a bent function, then f has exactly $2^{n-1} \pm 2^{\frac{n}{2}-1}$ zeroes; in particular f is not balanced.

Proof. $d(f, 0)=2^{n-1} \pm 2^{\frac{n}{2}-1} \neq 2^{n-1} . \diamond$

Exercise 1 Assuming the existence of a bent function, show that if n is even, then there exists a balanced function $f \in \mathcal{F}_{n}$ whose nonlinearity is $\sigma_{f}=2^{n-1}-2^{\frac{n}{2}}$, and whose linear potential is $\Lambda_{f}=\frac{1}{2^{n-2}}$.

Exercise 2 Let $f \in \mathcal{F}_{n}$, and let \breve{f} as in exercise 3 of section 3.2. Express the linear profile, the linear potential, and the nonlinearity of \breve{f} in terms of the corresponding quantities of f. Assuming the existence of a bent function for even n, show that for odd n there exists a balanced function f with $\sigma_{f}=2^{n-1}-2^{\frac{n-1}{2}}, \Lambda_{f}=\frac{1}{2^{n-1}}$.

