4 Approximation by Linear Structures

The second main approach to hidden linearity is via linear structures. These are detected by difference calculus.

4.1 Linear structures of a Boolean map

Definition 1 Let $f : \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^q$ be a Boolean map, and $u \in \mathbb{F}_2^n$. Then the **difference map** is defined by $\Delta_u f : \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^q$ is

$$\Delta_u f(x) := f(x+u) - f(x) \qquad \text{for all } x \in \mathbb{F}_2^n.$$

Lemma 1 Let $f, g: \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^q$ and $u \in \mathbb{F}_2^n$. Then:

- (i) $\Delta_u(f+g) = \Delta_u f + \Delta_u g$,
- (ii) $\operatorname{Deg} \Delta_u f \leq \operatorname{Deg} f 1.$

Proof. (i) is trivial.

(ii) Assume without loss of generality: q = 1, $f = T^{I}$ is a monomial, and finally $f = T_1 \cdots T_r$. Then

$$\Delta_u f(x) = (x_1 + u_1) \cdots (x_r + u_r) - x_1 \cdots x_r$$

obviously hs degree $\leq r - 1$. \diamond

Corollary 1 If f is constant, then $\Delta_u f = 0$ for all $u \in \mathbb{F}_2^n$.

Corollary 2 If f is affine, then $\Delta_u f$ constant for all $u \in \mathbb{F}_2^n$.

Definition 2 (Evertse, EUROCRYPT 87) A vector $u \in \mathbb{F}_2^n$ is called **linear** structure of $f: \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^q$, if $\Delta_u f$ is constant.

Remarks

- 1. $\Delta_{u+v}f(x) = f(x+u+v) f(x) = f(x+u+v) f(x+v) + f(x+v) f(x) = \Delta_u f(x+v) + \Delta_v f(x).$
- 2. If f is affine, then every vector is a linear structure of f.
- 3. 0 always is a linear structure of f.
- 4. If u and v are linear structures, then so is u + v by remark 1. Therefore the linear structures of f form a vector subspace of \mathbb{F}_2^n . On this subspace f is affine. We conclude that the converse of remark 2 is also true.

- 5. If $g: \mathbb{F}_2^q \longrightarrow \mathbb{F}_2^r$ is linear, then $\Delta_u(g \circ f) = g \circ \Delta_u f$.
- **Definition 3** For a Boolean map $f : \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^q$ the vector space of its linear structures is called the **radical** Rad_f, its dimension, **linearity dimension** of f, and its codimension, **rank** of f, Rank f.

4.2 The differential profile

For a Boolean map $f: \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^q$ and $u \in \mathbb{F}_2^n$, $v \in \mathbb{F}_2^q$ let

$$D_f(u,v) := \{x \in \mathbb{F}_2^n \mid \Delta_u f(x) = v\}$$

$$\delta_f(u,v) := \frac{1}{2^n} \# D_f(u,v).$$

Definition 4 (Chabaud/Vaudenay, EUROCRYPT 94) The function

$$\delta_f: \mathbb{F}_2^n \times \mathbb{F}_2^q \longrightarrow \mathbb{R}$$

is called the **differential profile** of f.

(The normalization with the coefficient $\frac{1}{2^n}$ is useful. In the literature the matrix $\#D_f(u, v)$ is called difference table.)

Remarks

1. If f is affine, f(x) = Ax + b, then $\Delta_u f(x) = Au$, hence

$$D_f(u,v) = \{x \in \mathbb{F}_2^n | Au = v\} = \begin{cases} \mathbb{F}_2^n, & \text{if } Au = v, \\ \emptyset & \text{else,} \end{cases}$$
$$\delta_f(u,v) = \begin{cases} 1, & \text{if } Au = v, \\ 0 & \text{else.} \end{cases}$$

Each row of the differential profile contains exactly one 1, and 0 else.

2. The following statements are equivalent:

$$u \text{ is a linear structure of } f \iff D_f(u, v) = \begin{cases} \mathbb{F}_2^n & \text{for one } v, \\ \emptyset & \text{else} \end{cases}$$
$$\iff \delta_f(u, v) = \begin{cases} 1 & \text{for one } v, \\ 0 & \text{else.} \end{cases}$$

The "row u" of the differential profile is 0 except exactly one entry 1. 3. For arbitrary f, and u = 0, we have

$$\delta_f(0,v) = \begin{cases} 1, & \text{if } v = 0, \\ 0 & \text{else} \end{cases}$$

(row 0 of the differential profile).

4. $\sum_{v \in \mathbb{F}_2^q} \delta_f(u, v) = 1$ (row sums of the differential profile). In particular for each vector $u \in \mathbb{F}_2^n$ there is a $v \in \mathbb{F}_2^q$ such that $\delta_f(u, v) \geq \frac{1}{2^q}$.

We have shown:

Proposition 1 For a Boolean map $f : \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^q$ the following statements are equivalent:

- (i) f is affine.
- (ii) Each vector $u \in \mathbb{F}_2^n$ is linear structure of f.
- (iii) Each row of the differential profile contains exactly one entry $\neq 0$.

Remarks

- 5. $x \in D_f(u, v) \Leftrightarrow x + u \in D_f(u, v)$.
- 6. All values $\#D_f(u, v)$ are even: For u = 0 this follows from remark 3, else from remark 5. Therefore all $\delta_f(u, v)$ are integer multiples of $\frac{1}{2^{n-1}}$.
- 7. In the case q = 1 the autocorrelation, by its definition, can be expressed as

$$\kappa_f(x) = \delta_f(x,0) - \delta_f(x,1).$$

Exercise 1 How does the differential profile behave under affine transformations of the argument or image space?

Exercise 2 Show that for bijective f always $\delta_{f^{-1}}(v, u) = \delta_f(u, v)$.

4.3 Efficient calculation of the differential profile

The following lemma is the basis for the efficient calculation of differential profiles:

Lemma 2 For every Boolean map $f: \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^q$

$$\delta_f = \frac{1}{2^n} \vartheta_f * \vartheta_f.$$

Proof.

$$\begin{split} \vartheta_f * \vartheta_f(u, v) &= \sum_{x \in \mathbb{F}_2^n} \sum_{y \in \mathbb{F}_2^q} \vartheta_f(x, y) \vartheta_f(x + u, y + v) \\ &= \sum_{x \in \mathbb{F}_2^n} \vartheta_f(x + u, f(x) + v) \\ &= \#\{x \in \mathbb{F}_2^n \mid f(x + u) = f(x) + v\}. \diamond \end{split}$$

The convolution theorem yields

$$\hat{\delta}_f = \frac{1}{2^n} \hat{\vartheta}_f^2 = 2^n \lambda_f,$$

and we have shown:

Theorem 1 The differential profile is, up to a constant factor, the Walsh transform of the linear profile:

$$\lambda_f = \frac{1}{2^n} \hat{\delta}_f, \qquad \delta_f = \frac{1}{2^q} \hat{\lambda}_f$$

Parseval's equation immediately gives:

Corollary 1 For every Boolean map $f: \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^q$

$$2^n \cdot \sum_{u \in \mathbb{F}_2^n} \sum_{v \in \mathbb{F}_2^q} \lambda_f(u, v)^2 = 2^q \cdot \sum_{x \in \mathbb{F}_2^n} \sum_{y \in \mathbb{F}_2^q} \delta_f(x, y)^2.$$

Corollary 2 Two Boolean maps $\mathbb{F}_2^n \longrightarrow \mathbb{F}_2^q$ have the same linear profile, if and only if they have the same differential profile.

Therefore we can efficiently calculate the differential profile of a map $f: \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^q$ by the following algorithm, that yields the linear profile as an intermediate result:

- 1. Calculate the spectrum $\hat{\vartheta}_f$.
- 2. Take the squares $\omega := \hat{\vartheta}_f^2$ and normalize $\lambda_f = \frac{1}{2^{2n}} \cdot \omega$.
- 3. Transform back to $\delta_f = \frac{1}{2^q} \hat{\lambda}_f = \frac{1}{2^{2n+q}} \hat{\omega}$.

The effort, after having calculated $\hat{\lambda}_f$, consists of additional $3N \cdot {}^2\log(N)$ "elementary operations". All in all this makes $6N \cdot {}^2\log(N)$ such operations plus N squarings, where $N = 2^{n+q}$ is the input size.

This entire procedure is in the sources as executable program bma ('Boolean Map Analysis').

Exercise Let $f: \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^q$ be a Boolean map. Show that

$$\sum_{u\in\mathbb{F}_2^n}\delta_f(u,v)=\frac{1}{2^n}\nu_f*\nu_f(v)$$

for all $v \in \mathbb{F}_2^q$. (Remember that ν_f is the preimage counter.)

Deduce that the following statements are equivalent (Zhang/Zheng, SAC '96):

- (i) f is balanced.
- (ii) $\sum_{u \in \mathbb{F}_2^n} \delta_f(u, v) = 2^{n-q}$ for all $v \in \mathbb{F}_2^q$ (all column sums of the differential profile).
- (iii) $\sum_{u \in \mathbb{F}_2^n} \delta_f(u, 0) = 2^{n-q}$ (first column sum of the differential profile).

4.4 The differential potential

Definition 5 (Nyberg, EUROCRYPT 93) For a Boolean map $f : \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^q$ the quantity

$$\Omega_f := \max\{\delta_f(u, v) \mid u \in \mathbb{F}_2^n, v \in \mathbb{F}_2^q, (u, v) \neq 0\}$$

is called **differential potential** of f.

Note: Nyberg denotes the maximum entry of the *difference table* (except at (0,0)) by "differential uniformity". Here I prefer a uniform treatment of the linear and the differential profiles and potentials.

Remarks

1. By remark 4 in 4.2 we have the bounds

$$\frac{1}{2^q} \le \Omega_f \le 1$$

- 2. Ω_f takes the lower bound 2^{-q} , if and only if all $\delta_f(u,v) = 2^{-q}$ for $u \neq 0$, i. e., if all the difference maps $\Delta_u f : \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^q$ are balanced. (The "row u" of the differential profile is constant.)
- 3. Since for $f : \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^q$ all values of the differential profile δ_f are multiples of $\frac{1}{2^{n-1}}$, the differential potential $\Omega_f \geq \frac{1}{2^{n-1}}$.
- 4. If f has a linear structure $\neq 0$, i. e., if $\operatorname{Rad}_f \neq 0$, then $\Omega_f = 1$.
- **Exercise 1** Show that Ω_f is invariant under affine transformations of \mathbb{F}_2^n and \mathbb{F}_2^q .

Exercise 2 Show that if f is bijective, then $\Omega_{f^{-1}} = \Omega_f$.

Definition 6 (Nyberg, EUROCRYPT 93) A Boolean map $f : \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^q$ is called **perfectly nonlinear**, if its differential potential has the (minimally possible) value $\Omega_f = 2^{-q}$.

Remarks

- 5. By remark 5 in 4.1 and proposition 3 in 3.2 this holds, if and only if $\beta \circ f$ is perfectly nonlinear for each linear form $\beta : \mathbb{F}_2^q \longrightarrow \mathbb{F}_2, \ \beta \neq 0.$
- 6. A perfectly nonlinear map $f : \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^q$ cannot have any linear structure $u \neq 0$.
- 7. If a perfectly nonlinear map exists, then $q \leq n-1$ by remark 3.

From remark 2 we conclude:

Proposition 2 $f : \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^q$ is perfectly nonlinear, if and only if the differential profile δ_f is constant $= 2^{-q}$ on $(\mathbb{F}_2^n - \{0\}) \times \mathbb{F}_2^q$.

4.5 Good diffusion

Definition 7 A Boolean map $f : \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^q$ has good diffusion with respect to $u \in \mathbb{F}_2^n$, if the difference function $\Delta_u f$ is balanced.

Remarks

1. For q = 1 this means f(x + u) - f(x) = 0 or 1 each for exactly 2^{n-1} vectors $x \in \mathbb{F}_2^n$. Let's denote the number of zeroes of the difference function by

$$\eta_f(u) := \#\{x \in \mathbb{F}_2^n \mid \Delta_u f(x) = 0\} = 2^n \delta_f(u, 0),$$

then good diffusion with respect to u is equivalent with $\eta_f(u) = 2^{n-1}$.

- 2. For general q good diffusion means, that $\#D_f(u,v) = 2^{n-q}$ and $\delta_f(u,v) = \frac{1}{2^q}$ for all $v \in \mathbb{F}_2^q$ —i. e. the "row u" of the differential profile is constant.
- 3. With respect to 0 no map has good diffusion.
- 4. Affine maps don't have good diffusion with respect to any vector u.
- 5. A Boolean map f is perfectly nonlinear, if and only if it has good diffusion with respect to all vectors $u \in \mathbb{F}_2^n \{0\}$.
- **Definition 8** (Webster/Tavares, CRYPTO 85) A Boolean function f fulfils the strict avalanche criterion (SAC), if f has good diffusion with respect to all canonical base vectors.

This means: Flipping one input bit changes exactly half of the values of f.

Remarks

6. Every perfectly nonlinear function fulfils the SAC.

We can express good diffusion of a Boolean function f by the convolution of the character form χ_f with itself:

$$\chi_f * \chi_f(u) = 2^n \kappa_f(u) = 2^n [\delta_f(u,0) - \delta_f(u,1)] = 2\eta_f(u) - 2^n,$$

where κ_f is the autocorrelation. Hence:

Lemma 3 A Boolean function $f : \mathbb{F}_2^n \longrightarrow \mathbb{F}_2$ has good diffusion with respect to u, if and only if

$$\chi_f * \chi_f(u) = 0$$
 or in other words $\kappa_f(u) = 0$.

Moreover u is a linear structure of f, if and only if

$$\chi_f * \chi_f(u) = \pm 2^n$$
 or in other words $\kappa_f(u) = \pm 1$.

Setting u = 0 we conclude

$$\chi_f * \chi_f(0) = 2^n$$

since $\eta_f(0) = 2^n$. Therefore f is perfectly nonlinear, if and only if $\chi_f * \chi_f = \hat{1}$, the point mass in 0, or if $(\hat{\chi}_f)^2 = \widehat{\chi_f * \chi_f} = 2^n$ constant. This was just the definition of a bent function. Thus we have shown:

Corollary 1 (Dillon 1974) A Boolean function f is perfectly nonlinear, if and only if it is bent.

Corollary 2 (Nyberg, EUROCRYPT 91) A Boolean map $f : \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^q$ is perfectly nonlinear, if and only if it is bent.

Proof. Each of these properties is equivalent analogous statement for all functions $\beta \circ f : \mathbb{F}_2^n \longrightarrow \mathbb{F}_2$ where $\beta : \mathbb{F}_2^q \longrightarrow \mathbb{F}_2$ an arbitrary linear form $\neq 0. \diamond$

An expression for a globally "as good as possible" diffusion of a Boolean function is the **global autocorrelation**

$$\tau_f := \sum_{x \in \mathbb{F}_2^n} \kappa_f(x)^2 = \frac{1}{2^n} \sum_{u \in \mathbb{F}_2^n} \hat{\kappa}_f(u)^2 = \frac{1}{2^n} \sum_{u \in \mathbb{F}_2^n} \hat{\chi}_f(u)^4;$$

we have used Parseval's equation and the corollary 5 of the convolution theorem in 2.3. In particular $\tau_f \geq \kappa_f(0)^2 = 1$, and we know already, that fis perfectly nonlinear, if and only if $\tau_f = 1$. Furthermore

$$\tau_f = \frac{1}{2^n} \sum_{u \in \mathbb{F}_2^n} \hat{\chi}_f(u)^4 \leq \frac{1}{2^n} \left[\sum_{u \in \mathbb{F}_2^n} \hat{\chi}_f(u)^2 \right]^2,$$

because all summands are ≥ 0 ; equality holds, if and only if at most one summand is > 0. Therefore $\tau_f \leq 2^n$, and equality holds, if and only if at most one $\hat{\chi}_f(u)^2 > 0$. This one term then must equal the total sum of squares 2^{2n} , hence $\hat{\chi}_f(u) = \pm 2^n$, hence $L_f(u) = \emptyset$ or \mathbb{F}_2^n , hence $f(x) = u \cdot x + 1$ or $f(x) = u \cdot x$ for all x. We have shown:

Proposition 3 Let τ_f be the global autocorrelation of a Boolean function $f: \mathbb{F}_2^n \longrightarrow \mathbb{F}_2$. Then:

- (i) $1 \le \tau_f \le 2^n$.
- (ii) $\tau_f = 1 \iff f$ perfectly nonlinear.
- (iii) $\tau_f = 2^n \iff f$ affine.

4.6 The linearity distance

Let

 $\mathcal{LS}_n := \{ f : \mathbb{F}_2^n \to \mathbb{F}_2 \mid f \text{ has a linear structure } \neq 0 \}.$

This is the union of the vector subspaces for a fixed linear structure, but it is in general not a vector subspace.

Definition 9 (Meier/Staffelbach, EUROCRYPT 89) For a Boolean function $f : \mathbb{F}_2^n \longrightarrow \mathbb{F}_2$ the Hamming distance

$$\rho_f := d(f, \mathcal{LS}_n)$$

is called the **linearity distance** of f.

Remarks

- 1. $\rho_f = 0 \Leftrightarrow f$ has a linear structure $\neq 0$.
- 2. Because $\mathcal{A}_n \subseteq \mathcal{LS}_n$, we have $\rho_f \leq \sigma_f$, the nonlinearity.

How large is ρ_f else? To find an answer, we count: For a fixed vector $u \in \mathbb{F}_2^n$ we decompose \mathbb{F}_2^n into two subsets

$$D_f(u,0) = \{x \in \mathbb{F}_2^n \mid \Delta_u f(x) = 0\},\$$

$$D_f(u,1) = \{x \in \mathbb{F}_2^n \mid \Delta_u f(x) = 1\}$$

of sizes $n_0 = \eta_f(u) = 2^n \delta_f(u, 0)$ and $n_1 = 2^n - \eta_f(u) = 2^n \delta_f(u, 1)$.

First assume $n_0 \ge n_1$. To convert f to a function that has u as a linear structure, we have to change at least $\frac{n_1}{2}$ values, and that suffices: To see this

let $D_f(u, 1) = M'_1 \cup M''_1$ be decomposed into any two subsets of the same size, where $x \in M'_1 \Leftrightarrow x + u \in M''_1$, $\#M'_1 = \#M''_1 = \frac{n_1}{2}$; then the function

$$f'(x) := \begin{cases} f(x) + 1 & \text{for } x \in M'_1, \\ f(x) & \text{else,} \end{cases}$$

has u as a linear structure:

$$\Delta_u f'(x) = f'(x+u) + f'(x) = \begin{cases} f(x+u) + f(x) &= 0 & \text{for } x \in M_0, \\ f(x+u) + f(x) + 1 &= 0 & \text{for } x \in M'_1, \\ f(x+u) + 1 + f(x) &= 0 & \text{for } x \in M''_1, \end{cases}$$

and this cannot be got with less changes.

If $n_0 < n_1$, in the same way we need $\frac{n_0}{2}$ changes. Therefore the distance of f to any function g, that has u as a linear structure, is

$$d(f,g) \ge n_f(u) := \min\{\frac{n_0}{2}, \frac{n_1}{2}\} = 2^{n-1} \cdot \min\{\delta_f(u,0), \delta_f(u,1)\},\$$

and this value is assumed by a suitable g. We conclude

$$\rho_f = \min\{n_f(u) \mid u \in \mathbb{F}_2^n - \{0\}\}.$$

Since always $n_0 + n_1 = 2^n$, we have $n_f(u) \le 2^{n-2}$. We have shown the first statement of:

Proposition 4 (Meier/Staffelbach, EUROCRYPT 89) The linearity distance of a Boolean function $f: \mathbb{F}_2^n \longrightarrow \mathbb{F}_2$ is

$$\rho_f \le 2^{n-2}.$$

Equality holds, if and only if f is perfectly nonlinear.

Proof. We have to show the second statement: In the count above for each vector $u \in \mathbb{F}_2^n - \{0\}$ we have $n_0 = \delta_f(u, 0) = n_1 = \delta_f(u, 1) = 2^{n-1}$.

Furthermore

$$\rho_f = 2^{n-1} \cdot \min\{\delta_f(u, v) \mid u \in \mathbb{F}_2^n - \{0\}, v \in \mathbb{F}_2\}.$$

Let this minimum be taken in (u_0, v_0) , i. e. $\rho_f = 2^{n-1} \cdot \delta_f(u_0, v_0)$, then $\delta_f(u_0, v_0 + 1) = 1 - \delta_f(u_0, v_0)$ is maximum, whence $= \Omega_f$. We conclude:

Proposition 5 The linearity distance ρ_f of a Boolean function f is tied to the differential potential Ω_f by the formula:

$$\rho_f = 2^{n-1} \cdot (1 - \Omega_f).$$