
4 Approximation by Linear Structures

The second main approach to hidden linearity is via linear structures. These
are detected by difference calculus.

4.1 Linear structures of a Boolean map

Definition 1 Let f : Fn
2 −→ Fq

2 be a Boolean map, and u ∈ Fn
2 . Then the

difference map is defined by ∆uf : Fn
2 −→ Fq

2 is

∆uf(x) := f(x+ u)− f(x) for all x ∈ Fn
2 .

Lemma 1 Let f, g : Fn
2 −→ Fq

2 and u ∈ Fn
2 . Then:

(i) ∆u(f + g) = ∆uf +∆ug,

(ii) Deg∆uf ≤ Deg f − 1.

Proof. (i) is trivial.
(ii) Assume without loss of generality: q = 1, f = T

I is a monomial, and
finally f = T1 · · ·Tr. Then

∆uf(x) = (x1 + u1) · · · (xr + ur)− x1 · · ·xr

obviously hs degree ≤ r − 1. ✸

Corollary 1 If f is constant, then ∆uf = 0 for all u ∈ Fn
2 .

Corollary 2 If f is affine, then ∆uf constant for all u ∈ Fn
2 .

Definition 2 (Evertse, Eurocrypt 87) A vector u ∈ Fn
2 is called linear

structure of f : Fn
2 −→ Fq

2, if ∆uf is constant.

Remarks

1. ∆u+vf(x) = f(x+u+v)−f(x) = f(x+u+v)−f(x+v)+f(x+ v)−
f(x) = ∆uf(x+ v) +∆vf(x).

2. If f is affine, then every vector is a linear structure of f .

3. 0 always is a linear structure of f .

4. If u and v are linear structures, then so is u + v by remark 1. There-
fore the linear structures of f form a vector subspace of Fn

2 . On this
subspace f is affine. We conclude that the converse of remark 2 is also
true.
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5. If g : Fq
2 −→ Fr

2 is linear, then ∆u(g ◦ f) = g ◦∆uf .

Definition 3 For a Boolean map f : Fn
2 −→ Fq

2 the vector space of its
linear structures is called the radical Radf , its dimension, linearity
dimension of f , and its codimension, rank of f , Rank f .

4.2 The differential profile

For a Boolean map f : Fn
2 −→ Fq

2 and u ∈ Fn
2 , v ∈ Fq

2 let

Df (u, v) := {x ∈ Fn
2 |∆uf(x) = v},

δf (u, v) :=
1

2n
#Df (u, v).

Definition 4 (Chabaud/Vaudenay, Eurocrypt 94) The function

δf : Fn
2 × Fq

2 −→ R

is called the differential profile of f .

(The normalization with the coefficient 1
2n is useful. In the literature the

matrix #Df (u, v) is called difference table.)

Remarks

1. If f is affine, f(x) = Ax+ b, then ∆uf(x) = Au, hence

Df (u, v) = {x ∈ Fn
2 |Au = v} =

�
Fn
2 , if Au = v,

∅ else,

δf (u, v) =

�
1, if Au = v,

0 else.

Each row of the differential profile contains exactly one 1, and 0 else.

2. The following statements are equivalent:

u is a linear structure of f ⇐⇒ Df (u, v) =

�
Fn
2 for one v,

∅ else

⇐⇒ δf (u, v) =

�
1 for one v,

0 else.

The “row u” of the differential profile is 0 except exactly one entry 1.

3. For arbitrary f , and u = 0, we have

δf (0, v) =

�
1, if v = 0,

0 else

(row 0 of the differential profile).
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4.
�

v∈Fq
2
δf (u, v) = 1 (row sums of the differential profile). In particular

for each vector u ∈ Fn
2 there is a v ∈ Fq

2 such that δf (u, v) ≥ 1
2q .

We have shown:

Proposition 1 For a Boolean map f : Fn
2 −→ Fq

2 the following statements

are equivalent:

(i) f is affine.

(ii) Each vector u ∈ Fn
2 is linear structure of f .

(iii) Each row of the differential profile contains exactly one entry �= 0.

Remarks

5. x ∈ Df (u, v) ⇔ x+ u ∈ Df (u, v).

6. All values #Df (u, v) are even: For u = 0 this follows from remark 3,
else from remark 5. Therefore all δf (u, v) are integer multiples of 1

2n−1 .

7. In the case q = 1 the autocorrelation, by its definition, can be expressed
as

κf (x) = δf (x, 0)− δf (x, 1).

Exercise 1 How does the differential profile behave under affine transfor-
mations of the argument or image space?

Exercise 2 Show that for bijective f always δf−1(v, u) = δf (u, v).

4.3 Efficient calculation of the differential profile

The following lemma is the basis for the efficient calculation of differential
profiles:

Lemma 2 For every Boolean map f : Fn
2 −→ Fq

2

δf =
1

2n
ϑf ∗ ϑf .

Proof.

ϑf ∗ ϑf (u, v) =
�

x∈Fn
2

�

y∈Fq
2

ϑf (x, y)ϑf (x+ u, y + v)

=
�

x∈Fn
2

ϑf (x+ u, f(x) + v)

= #{x ∈ Fn
2 | f(x+ u) = f(x) + v}.✸
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The convolution theorem yields

δ̂f =
1

2n
ϑ̂
2
f = 2nλf ,

and we have shown:

Theorem 1 The differential profile is, up to a constant factor, the Walsh

transform of the linear profile:

λf =
1

2n
δ̂f , δf =

1

2q
λ̂f .

Parseval’s equation immediately gives:

Corollary 1 For every Boolean map f : Fn
2 −→ Fq

2

2n ·
�

u∈Fn
2

�

v∈Fq
2

λf (u, v)
2 = 2q ·

�

x∈Fn
2

�

y∈Fq
2

δf (x, y)
2
.

Corollary 2 Two Boolean maps Fn
2 −→ Fq

2 have the same linear profile, if

and only if they have the same differential profile.

Therefore we can efficiently calculate the differential profile of a map
f : Fn

2 −→ Fq
2 by the following algorithm, that yields the linear profile as an

intermediate result:

1. Calculate the spectrum ϑ̂f .

2. Take the squares ω := ϑ̂
2
f and normalize λf = 1

22n · ω.

3. Transform back to δf = 1
2q λ̂f = 1

22n+q ω̂.

The effort, after having calculated λ̂f , consists of additional 3N · 2log(N)
“elementary operations”. All in all this makes 6N · 2log(N) such operations
plus N squarings, where N = 2n+q is the input size.

This entire procedure is in the sources as executable program bma

(‘Boolean Map Analysis’).

Exercise Let f : Fn
2 −→ Fq

2 be a Boolean map. Show that

�

u∈Fn
2

δf (u, v) =
1

2n
νf ∗ νf (v)

for all v ∈ Fq
2. (Remember that νf is the preimage counter.)

Deduce that the following statements are equivalent (Zhang/Zheng,
SAC ’96):
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(i) f is balanced.

(ii)
�

u∈Fn
2
δf (u, v) = 2n−q for all v ∈ Fq

2 (all column sums of the

differential profile).

(iii)
�

u∈Fn
2
δf (u, 0) = 2n−q (first column sum of the differential pro-

file).

4.4 The differential potential

Definition 5 (Nyberg, Eurocrypt 93) For a Boolean map f : Fn
2 −→ Fq

2
the quantity

Ωf := max{δf (u, v) | u ∈ Fn
2 , v ∈ Fq

2, (u, v) �= 0}

is called differential potential of f .

Note: Nyberg denotes the maximum entry of the difference table (except at
(0, 0)) by “differential uniformity”. Here I prefer a uniform treatment of the
linear and the differential profiles and potentials.

Remarks

1. By remark 4 in 4.2 we have the bounds

1

2q
≤ Ωf ≤ 1.

2. Ωf takes the lower bound 2−q, if and only if all δf (u, v) = 2−q for
u �= 0 , i. e., if all the difference maps ∆uf : Fn

2 −→ Fq
2 are balanced.

(The “row u” of the differential profile is constant.)

3. Since for f : Fn
2 −→ Fq

2 all values of the differential profile δf are
multiples of 1

2n−1 , the differential potential Ωf ≥ 1
2n−1 .

4. If f has a linear structure �= 0, i. e., if Radf �= 0, then Ωf = 1.

Exercise 1 Show that Ωf is invariant under affine transformations of Fn
2

and Fq
2.

Exercise 2 Show that if f is bijective, then Ωf−1 = Ωf .

Definition 6 (Nyberg, Eurocrypt 93) A Boolean map f : Fn
2 −→ Fq

2 is
called perfectly nonlinear, if its differential potential has the (min-
imally possible) value Ωf = 2−q.

Remarks
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5. By remark 5 in 4.1 and proposition 3 in 3.2 this holds, if and only if
β ◦ f is perfectly nonlinear for each linear form β : Fq

2 −→ F2, β �= 0.

6. A perfectly nonlinear map f : Fn
2 −→ Fq

2 cannot have any linear struc-
ture u �= 0.

7. If a perfectly nonlinear map exists, then q ≤ n− 1 by remark 3.

From remark 2 we conclude:

Proposition 2 f : Fn
2 −→ Fq

2 is perfectly nonlinear, if and only if the

differential profile δf is constant = 2−q
on (Fn

2 − {0})× Fq
2.

4.5 Good diffusion

Definition 7 A Boolean map f : Fn
2 −→ Fq

2 has good diffusion with
respect to u ∈ Fn

2 , if the difference function ∆uf is balanced.

Remarks

1. For q = 1 this means f(x + u) − f(x) = 0 or 1 each for exactly 2n−1

vectors x ∈ Fn
2 . Let’s denote the number of zeroes of the difference

function by

ηf (u) := #{x ∈ Fn
2 |∆uf(x) = 0} = 2nδf (u, 0),

then good diffusion with respect to u is equivalent with ηf (u) = 2n−1.

2. For general q good diffusion means, that #Df (u, v) = 2n−q and
δf (u, v) =

1
2q for all v ∈ Fq

2—i. e. the “row u” of the differential profile
is constant.

3. With respect to 0 no map has good diffusion.

4. Affine maps don’t have good diffusion with respect to any vector u.

5. A Boolean map f is perfectly nonlinear, if and only if it has good
diffusion with respect to all vectors u ∈ Fn

2 − {0}.

Definition 8 (Webster/Tavares, Crypto 85) A Boolean function f fulfils
the strict avalanche criterion (SAC), if f has good diffusion with re-
spect to all canonical base vectors.

This means: Flipping one input bit changes exactly half of the values of f .

Remarks
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6. Every perfectly nonlinear function fulfils the SAC.

We can express good diffusion of a Boolean function f by the convolution
of the character form χf with itself:

χf ∗ χf (u) = 2nκf (u) = 2n[δf (u, 0)− δf (u, 1)] = 2ηf (u)− 2n,

where κf is the autocorrelation. Hence:

Lemma 3 A Boolean function f : Fn
2 −→ F2 has good diffusion with respect

to u, if and only if

χf ∗ χf (u) = 0 or in other words κf (u) = 0.

Moreover u is a linear structure of f , if and only if

χf ∗ χf (u) = ±2n or in other words κf (u) = ±1.

Setting u = 0 we conclude

χf ∗ χf (0) = 2n,

since ηf (0) = 2n. Therefore f is perfectly nonlinear, if and only if χf ∗χf = 1̂,
the point mass in 0, or if (χ̂f )2 = �χf ∗ χf = 2n constant. This was just the
definition of a bent function. Thus we have shown:

Corollary 1 (Dillon 1974) A Boolean function f is perfectly nonlinear,

if and only if it is bent.

Corollary 2 (Nyberg, Eurocrypt 91) A Boolean map f : Fn
2 −→ Fq

2 is

perfectly nonlinear, if and only if it is bent.

Proof. Each of these properties is equivalent analogous statement for all
functions β ◦ f : Fn

2 −→ F2 where β : Fq
2 −→ F2 an arbitrary linear form

�= 0. ✸

An expression for a globally “as good as possible” diffusion of a Boolean
function is the global autocorrelation

τf :=
�

x∈Fn
2

κf (x)
2 =

1

2n

�

u∈Fn
2

κ̂f (u)
2 =

1

2n

�

u∈Fn
2

χ̂f (u)
4;

we have used Parseval’s equation and the corollary 5 of the convolution
theorem in 2.3. In particular τf ≥ κf (0)2 = 1, and we know already, that f
is perfectly nonlinear, if and only if τf = 1. Furthermore

τf =
1

2n

�

u∈Fn
2

χ̂f (u)
4 ≤ 1

2n




�

u∈Fn
2

χ̂f (u)
2




2

,
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because all summands are ≥ 0; equality holds, if and only if at most one
summand is > 0. Therefore τf ≤ 2n, and equality holds, if and only if at
most one χ̂f (u)2 > 0. This one term then must equal the total sum of squares
22n, hence χ̂f (u) = ±2n, hence Lf (u) = ∅ or Fn

2 , hence f(x) = u · x + 1 or
f(x) = u · x for all x. We have shown:

Proposition 3 Let τf be the global autocorrelation of a Boolean function

f : Fn
2 −→ F2. Then:

(i) 1 ≤ τf ≤ 2n.

(ii) τf = 1 ⇐⇒ f perfectly nonlinear.

(iii) τf = 2n ⇐⇒ f affine.

4.6 The linearity distance

Let
LSn := {f : Fn

2 → F2 | f has a linear structure �= 0}.

This is the union of the vector subspaces for a fixed linear structure, but it
is in general not a vector subspace.

Definition 9 (Meier/Staffelbach, Eurocrypt 89) For a Boolean function
f :Fn

2 −→ F2 the Hamming distance

ρf := d(f,LSn)

is called the linearity distance of f .

Remarks

1. ρf = 0 ⇔ f has a linear structure �= 0.

2. Because An ⊆ LSn, we have ρf ≤ σf , the nonlinearity.

How large is ρf else? To find an answer, we count: For a fixed vector
u ∈ Fn

2 we decompose Fn
2 into two subsets

Df (u, 0) = {x ∈ Fn
2 |∆uf(x) = 0},

Df (u, 1) = {x ∈ Fn
2 |∆uf(x) = 1}

of sizes n0 = ηf (u) = 2nδf (u, 0) and n1 = 2n − ηf (u) = 2nδf (u, 1).
First assume n0 ≥ n1. To convert f to a function that has u as a linear

structure, we have to change at least n1
2 values, and that suffices: To see this
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let Df (u, 1) = M
�
1 ∪ M

��
1 be decomposed into any two subsets of the same

size, where x ∈ M
�
1 ⇔ x+ u ∈ M

��
1 , #M

�
1 = #M

��
1 = n1

2 ; then the function

f
�(x) :=

�
f(x) + 1 for x ∈ M

�
1,

f(x) else,

has u as a linear structure:

∆uf
�(x) = f

�(x+ u) + f
�(x) =






f(x+ u) + f(x) = 0 for x ∈ M0,

f(x+ u) + f(x) + 1 = 0 for x ∈ M
�
1,

f(x+ u) + 1 + f(x) = 0 for x ∈ M
��
1 ,

and this cannot be got with less changes.
If n0 < n1, in the same way we need n0

2 changes. Therefore the distance
of f to any function g, that has u as a linear structure, is

d(f, g) ≥ nf (u) := min{n0

2
,
n1

2
} = 2n−1 ·min{δf (u, 0), δf (u, 1)},

and this value is assumed by a suitable g. We conclude

ρf = min{nf (u) | u ∈ Fn
2 − {0}}.

Since always n0 + n1 = 2n, we have nf (u) ≤ 2n−2. We have shown the first
statement of:

Proposition 4 (Meier/Staffelbach, Eurocrypt 89) The linearity dis-

tance of a Boolean function f : Fn
2 −→ F2 is

ρf ≤ 2n−2
.

Equality holds, if and only if f is perfectly nonlinear.

Proof. We have to show the second statement: In the count above for each
vector u ∈ Fn

2 − {0} we have n0 = δf (u, 0) = n1 = δf (u, 1) = 2n−1. ✸

Furthermore

ρf = 2n−1 ·min{δf (u, v) | u ∈ Fn
2 − {0}, v ∈ F2}.

Let this minimum be taken in (u0, v0), i. e. ρf = 2n−1 · δf (u0, v0), then
δf (u0, v0 + 1) = 1− δf (u0, v0) is maximum, whence = Ωf . We conclude:

Proposition 5 The linearity distance ρf of a Boolean function f is tied to

the differential potential Ωf by the formula:

ρf = 2n−1 · (1− Ωf ).
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