4 Approximation by Linear Structures

The second main approach to hidden linearity is via linear structures. These are detected by difference calculus.

4.1 Linear structures of a Boolean map

Definition 1 Let $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ be a Boolean map, and $u \in \mathbb{F}_{2}^{n}$. Then the difference map is defined by $\Delta_{u} f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ is

$$
\Delta_{u} f(x):=f(x+u)-f(x) \quad \text { for all } x \in \mathbb{F}_{2}^{n}
$$

Lemma 1 Let $f, g: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ and $u \in \mathbb{F}_{2}^{n}$. Then:
(i) $\Delta_{u}(f+g)=\Delta_{u} f+\Delta_{u} g$,
(ii) $\operatorname{Deg} \Delta_{u} f \leq \operatorname{Deg} f-1$.

Proof. (i) is trivial.
(ii) Assume without loss of generality: $q=1, f=T^{I}$ is a monomial, and finally $f=T_{1} \cdots T_{r}$. Then

$$
\Delta_{u} f(x)=\left(x_{1}+u_{1}\right) \cdots\left(x_{r}+u_{r}\right)-x_{1} \cdots x_{r}
$$

obviously hs degree $\leq r-1$.

Corollary 1 If f is constant, then $\Delta_{u} f=0$ for all $u \in \mathbb{F}_{2}^{n}$.
Corollary 2 If f is affine, then $\Delta_{u} f$ constant for all $u \in \mathbb{F}_{2}^{n}$.
Definition 2 (Evertse, Eurocrypt 87) A vector $u \in \mathbb{F}_{2}^{n}$ is called linear structure of $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$, if $\Delta_{u} f$ is constant.

Remarks

1. $\Delta_{u+v} f(x)=f(x+u+v)-f(x)=f(x+u+v)-f(x+v)+f(x+v)-$ $f(x)=\Delta_{u} f(x+v)+\Delta_{v} f(x)$.
2. If f is affine, then every vector is a linear structure of f.
3. 0 always is a linear structure of f.
4. If u and v are linear structures, then so is $u+v$ by remark 1 . Therefore the linear structures of f form a vector subspace of \mathbb{F}_{2}^{n}. On this subspace f is affine. We conclude that the converse of remark 2 is also true.
5. If $g: \mathbb{F}_{2}^{q} \longrightarrow \mathbb{F}_{2}^{r}$ is linear, then $\Delta_{u}(g \circ f)=g \circ \Delta_{u} f$.

Definition 3 For a Boolean map $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ the vector space of its linear structures is called the radical Rad_{f}, its dimension, linearity dimension of f, and its codimension, rank of $f, \operatorname{Rank} f$.

4.2 The differential profile

For a Boolean map $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ and $u \in \mathbb{F}_{2}^{n}, v \in \mathbb{F}_{2}^{q}$ let

$$
\begin{aligned}
D_{f}(u, v) & :=\left\{x \in \mathbb{F}_{2}^{n} \mid \Delta_{u} f(x)=v\right\} \\
\delta_{f}(u, v) & :=\frac{1}{2^{n}} \# D_{f}(u, v)
\end{aligned}
$$

Definition 4 (Chabaud/Vaudenay, Eurocrypt 94) The function

$$
\delta_{f}: \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{q} \longrightarrow \mathbb{R}
$$

is called the differential profile of f.
(The normalization with the coefficient $\frac{1}{2^{n}}$ is useful. In the literature the matrix $\# D_{f}(u, v)$ is called difference table.)

Remarks

1. If f is affine, $f(x)=A x+b$, then $\Delta_{u} f(x)=A u$, hence

$$
\begin{aligned}
D_{f}(u, v) & =\left\{x \in \mathbb{F}_{2}^{n} \mid A u=v\right\}= \begin{cases}\mathbb{F}_{2}^{n}, & \text { if } A u=v, \\
\emptyset & \text { else },\end{cases} \\
\delta_{f}(u, v) & = \begin{cases}1, & \text { if } A u=v, \\
0 & \text { else. }\end{cases}
\end{aligned}
$$

Each row of the differential profile contains exactly one 1 , and 0 else.
2. The following statements are equivalent:

$$
\begin{aligned}
u \text { is a linear structure of } f & \Longleftrightarrow D_{f}(u, v)= \begin{cases}\mathbb{F}_{2}^{n} & \text { for one } v, \\
\emptyset & \text { else }\end{cases} \\
& \Longleftrightarrow \delta_{f}(u, v)= \begin{cases}1 & \text { for one } v \\
0 & \text { else }\end{cases}
\end{aligned}
$$

The "row u " of the differential profile is 0 except exactly one entry 1 .
3. For arbitrary f, and $u=0$, we have

$$
\delta_{f}(0, v)= \begin{cases}1, & \text { if } v=0 \\ 0 & \text { else }\end{cases}
$$

(row 0 of the differential profile).
4. $\sum_{v \in \mathbb{F}_{2}^{q}} \delta_{f}(u, v)=1$ (row sums of the differential profile). In particular for each vector $u \in \mathbb{F}_{2}^{n}$ there is a $v \in \mathbb{F}_{2}^{q}$ such that $\delta_{f}(u, v) \geq \frac{1}{2^{q}}$.
We have shown:
Proposition 1 For a Boolean map $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ the following statements are equivalent:
(i) f is affine.
(ii) Each vector $u \in \mathbb{F}_{2}^{n}$ is linear structure of f.
(iii) Each row of the differential profile contains exactly one entry $\neq 0$.

Remarks

5. $x \in D_{f}(u, v) \Leftrightarrow x+u \in D_{f}(u, v)$.
6. All values $\# D_{f}(u, v)$ are even: For $u=0$ this follows from remark 3 , else from remark 5. Therefore all $\delta_{f}(u, v)$ are integer multiples of $\frac{1}{2^{n-1}}$.
7. In the case $q=1$ the autocorrelation, by its definition, can be expressed as

$$
\kappa_{f}(x)=\delta_{f}(x, 0)-\delta_{f}(x, 1)
$$

Exercise 1 How does the differential profile behave under affine transformations of the argument or image space?

Exercise 2 Show that for bijective f always $\delta_{f^{-1}}(v, u)=\delta_{f}(u, v)$.

4.3 Efficient calculation of the differential profile

The following lemma is the basis for the efficient calculation of differential profiles:

Lemma 2 For every Boolean map $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$

$$
\delta_{f}=\frac{1}{2^{n}} \vartheta_{f} * \vartheta_{f}
$$

Proof.

$$
\begin{aligned}
\vartheta_{f} * \vartheta_{f}(u, v) & =\sum_{x \in \mathbb{F}_{2}^{n}} \sum_{y \in \mathbb{F}_{2}^{q}} \vartheta_{f}(x, y) \vartheta_{f}(x+u, y+v) \\
& =\sum_{x \in \mathbb{F}_{2}^{n}} \vartheta_{f}(x+u, f(x)+v) \\
& =\#\left\{x \in \mathbb{F}_{2}^{n} \mid f(x+u)=f(x)+v\right\} . \diamond
\end{aligned}
$$

The convolution theorem yields

$$
\hat{\delta}_{f}=\frac{1}{2^{n}} \hat{\vartheta}_{f}^{2}=2^{n} \lambda_{f},
$$

and we have shown:
Theorem 1 The differential profile is, up to a constant factor, the Walsh transform of the linear profile:

$$
\lambda_{f}=\frac{1}{2^{n}} \hat{\delta}_{f}, \quad \delta_{f}=\frac{1}{2^{q}} \hat{\lambda}_{f}
$$

Parseval's equation immediately gives:
Corollary 1 For every Boolean map $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$

$$
2^{n} \cdot \sum_{u \in \mathbb{F}_{2}^{n}} \sum_{v \in \mathbb{F}_{2}^{q}} \lambda_{f}(u, v)^{2}=2^{q} \cdot \sum_{x \in \mathbb{F}_{2}^{n}} \sum_{y \in \mathbb{F}_{2}^{q}} \delta_{f}(x, y)^{2} .
$$

Corollary 2 Two Boolean maps $\mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ have the same linear profile, if and only if they have the same differential profile.

Therefore we can efficiently calculate the differential profile of a map $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ by the following algorithm, that yields the linear profile as an intermediate result:

1. Calculate the spectrum $\hat{\vartheta}_{f}$.
2. Take the squares $\omega:=\hat{\vartheta}_{f}^{2}$ and normalize $\lambda_{f}=\frac{1}{2^{2 n}} \cdot \omega$.
3. Transform back to $\delta_{f}=\frac{1}{2^{q}} \hat{\lambda}_{f}=\frac{1}{2^{2 n+q}} \hat{\omega}$.

The effort, after having calculated $\hat{\lambda}_{f}$, consists of additional $3 N \cdot{ }^{2} \log (N)$ "elementary operations". All in all this makes $6 N \cdot{ }^{2} \log (N)$ such operations plus N squarings, where $N=2^{n+q}$ is the input size.

This entire procedure is in the sources as executable program bma ('Boolean Map Analysis').

Exercise Let $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ be a Boolean map. Show that

$$
\sum_{u \in \mathbb{F}_{2}^{n}} \delta_{f}(u, v)=\frac{1}{2^{n}} \nu_{f} * \nu_{f}(v)
$$

for all $v \in \mathbb{F}_{2}^{q}$. (Remember that ν_{f} is the preimage counter.)
Deduce that the following statements are equivalent (Zhang/Zheng, SAC '96):
(i) f is balanced.
(ii) $\sum_{u \in \mathbb{F}_{2}^{n}} \delta_{f}(u, v)=2^{n-q}$ for all $v \in \mathbb{F}_{2}^{q}$ (all column sums of the differential profile).
(iii) $\sum_{u \in \mathbb{F}_{2}^{n}} \delta_{f}(u, 0)=2^{n-q}$ (first column sum of the differential profile).

4.4 The differential potential

Definition 5 (Nyberg, Eurocrypt 93) For a Boolean map $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ the quantity

$$
\Omega_{f}:=\max \left\{\delta_{f}(u, v) \mid u \in \mathbb{F}_{2}^{n}, v \in \mathbb{F}_{2}^{q},(u, v) \neq 0\right\}
$$

is called differential potential of f.

Note: Nyberg denotes the maximum entry of the difference table (except at $(0,0))$ by "differential uniformity". Here I prefer a uniform treatment of the linear and the differential profiles and potentials.

Remarks

1. By remark 4 in 4.2 we have the bounds

$$
\frac{1}{2^{q}} \leq \Omega_{f} \leq 1
$$

2. Ω_{f} takes the lower bound 2^{-q}, if and only if all $\delta_{f}(u, v)=2^{-q}$ for $u \neq 0$, i. e., if all the difference maps $\Delta_{u} f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ are balanced. (The "row u " of the differential profile is constant.)
3. Since for $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ all values of the differential profile δ_{f} are multiples of $\frac{1}{2^{n-1}}$, the differential potential $\Omega_{f} \geq \frac{1}{2^{n-1}}$.
4. If f has a linear structure $\neq 0$, i. e., if $\operatorname{Rad}_{f} \neq 0$, then $\Omega_{f}=1$.

Exercise 1 Show that Ω_{f} is invariant under affine transformations of \mathbb{F}_{2}^{n} and \mathbb{F}_{2}^{q}.

Exercise 2 Show that if f is bijective, then $\Omega_{f-1}=\Omega_{f}$.
Definition 6 (Nyberg, Eurocrypt 93) A Boolean map $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ is called perfectly nonlinear, if its differential potential has the (minimally possible) value $\Omega_{f}=2^{-q}$.

Remarks

5. By remark 5 in 4.1 and proposition 3 in 3.2 this holds, if and only if $\beta \circ f$ is perfectly nonlinear for each linear form $\beta: \mathbb{F}_{2}^{q} \longrightarrow \mathbb{F}_{2}, \beta \neq 0$.
6. A perfectly nonlinear map $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ cannot have any linear structure $u \neq 0$.
7. If a perfectly nonlinear map exists, then $q \leq n-1$ by remark 3 .

From remark 2 we conclude:
Proposition $2 f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ is perfectly nonlinear, if and only if the differential profile δ_{f} is constant $=2^{-q}$ on $\left(\mathbb{F}_{2}^{n}-\{0\}\right) \times \mathbb{F}_{2}^{q}$.

4.5 Good diffusion

Definition 7 A Boolean map $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ has good diffusion with respect to $u \in \mathbb{F}_{2}^{n}$, if the difference function $\Delta_{u} f$ is balanced.

Remarks

1. For $q=1$ this means $f(x+u)-f(x)=0$ or 1 each for exactly 2^{n-1} vectors $x \in \mathbb{F}_{2}^{n}$. Let's denote the number of zeroes of the difference function by

$$
\eta_{f}(u):=\#\left\{x \in \mathbb{F}_{2}^{n} \mid \Delta_{u} f(x)=0\right\}=2^{n} \delta_{f}(u, 0)
$$

then good diffusion with respect to u is equivalent with $\eta_{f}(u)=2^{n-1}$.
2. For general q good diffusion means, that $\# D_{f}(u, v)=2^{n-q}$ and $\delta_{f}(u, v)=\frac{1}{2^{q}}$ for all $v \in \mathbb{F}_{2}^{q}$-i. e. the "row u " of the differential profile is constant.
3. With respect to 0 no map has good diffusion.
4. Affine maps don't have good diffusion with respect to any vector u.
5. A Boolean map f is perfectly nonlinear, if and only if it has good diffusion with respect to all vectors $u \in \mathbb{F}_{2}^{n}-\{0\}$.

Definition 8 (Webster/Tavares, Crypto 85) A Boolean function fulfils the strict avalanche criterion (SAC), if f has good diffusion with respect to all canonical base vectors.

This means: Flipping one input bit changes exactly half of the values of f.

Remarks

6. Every perfectly nonlinear function fulfils the SAC.

We can express good diffusion of a Boolean function f by the convolution of the character form χ_{f} with itself:

$$
\chi_{f} * \chi_{f}(u)=2^{n} \kappa_{f}(u)=2^{n}\left[\delta_{f}(u, 0)-\delta_{f}(u, 1)\right]=2 \eta_{f}(u)-2^{n}
$$

where κ_{f} is the autocorrelation. Hence:
Lemma 3 A Boolean function $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}$ has good diffusion with respect to u, if and only if

$$
\chi_{f} * \chi_{f}(u)=0 \quad \text { or in other words } \quad \kappa_{f}(u)=0
$$

Moreover u is a linear structure of f, if and only if

$$
\chi_{f} * \chi_{f}(u)= \pm 2^{n} \quad \text { or in other words } \quad \kappa_{f}(u)= \pm 1
$$

Setting $u=0$ we conclude

$$
\chi_{f} * \chi_{f}(0)=2^{n}
$$

since $\eta_{f}(0)=2^{n}$. Therefore f is perfectly nonlinear, if and only if $\chi_{f} * \chi_{f}=\hat{1}$, the point mass in 0 , or if $\left(\hat{\chi}_{f}\right)^{2}=\widehat{\chi_{f} * \chi_{f}}=2^{n}$ constant. This was just the definition of a bent function. Thus we have shown:

Corollary 1 (Dillon 1974) A Boolean function f is perfectly nonlinear, if and only if it is bent.

Corollary 2 (Nyberg, Eurocrypt 91) A Boolean map $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{q}$ is perfectly nonlinear, if and only if it is bent.

Proof. Each of these properties is equivalent analogous statement for all functions $\beta \circ f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}$ where $\beta: \mathbb{F}_{2}^{q} \longrightarrow \mathbb{F}_{2}$ an arbitrary linear form $\neq 0$.

An expression for a globally "as good as possible" diffusion of a Boolean function is the global autocorrelation

$$
\tau_{f}:=\sum_{x \in \mathbb{F}_{2}^{n}} \kappa_{f}(x)^{2}=\frac{1}{2^{n}} \sum_{u \in \mathbb{F}_{2}^{n}} \hat{\kappa}_{f}(u)^{2}=\frac{1}{2^{n}} \sum_{u \in \mathbb{F}_{2}^{n}} \hat{\chi}_{f}(u)^{4} ;
$$

we have used Parseval's equation and the corollary 5 of the convolution theorem in 2.3. In particular $\tau_{f} \geq \kappa_{f}(0)^{2}=1$, and we know already, that f is perfectly nonlinear, if and only if $\tau_{f}=1$. Furthermore

$$
\tau_{f}=\frac{1}{2^{n}} \sum_{u \in \mathbb{F}_{2}^{n}} \hat{\chi}_{f}(u)^{4} \leq \frac{1}{2^{n}}\left[\sum_{u \in \mathbb{F}_{2}^{n}} \hat{\chi}_{f}(u)^{2}\right]^{2}
$$

because all summands are ≥ 0; equality holds, if and only if at most one summand is >0. Therefore $\tau_{f} \leq 2^{n}$, and equality holds, if and only if at most one $\hat{\chi}_{f}(u)^{2}>0$. This one term then must equal the total sum of squares $2^{2 n}$, hence $\hat{\chi}_{f}(u)= \pm 2^{n}$, hence $L_{f}(u)=\emptyset$ or \mathbb{F}_{2}^{n}, hence $f(x)=u \cdot x+1$ or $f(x)=u \cdot x$ for all x. We have shown:

Proposition 3 Let τ_{f} be the global autocorrelation of a Boolean function $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}$. Then:
(i) $1 \leq \tau_{f} \leq 2^{n}$.
(ii) $\tau_{f}=1 \Longleftrightarrow f$ perfectly nonlinear.
(iii) $\tau_{f}=2^{n} \Longleftrightarrow f$ affine.

4.6 The linearity distance

Let

$$
\mathcal{L} \mathcal{S}_{n}:=\left\{f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2} \mid f \text { has a linear structure } \neq 0\right\}
$$

This is the union of the vector subspaces for a fixed linear structure, but it is in general not a vector subspace.

Definition 9 (Meier/Staffelbach, Eurocrypt 89) For a Boolean function $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}$ the Hamming distance

$$
\rho_{f}:=d\left(f, \mathcal{L} \mathcal{S}_{n}\right)
$$

is called the linearity distance of f.

Remarks

1. $\rho_{f}=0 \Leftrightarrow f$ has a linear structure $\neq 0$.
2. Because $\mathcal{A}_{n} \subseteq \mathcal{L} \mathcal{S}_{n}$, we have $\rho_{f} \leq \sigma_{f}$, the nonlinearity.

How large is ρ_{f} else? To find an answer, we count: For a fixed vector $u \in \mathbb{F}_{2}^{n}$ we decompose \mathbb{F}_{2}^{n} into two subsets

$$
\begin{aligned}
D_{f}(u, 0) & =\left\{x \in \mathbb{F}_{2}^{n} \mid \Delta_{u} f(x)=0\right\} \\
D_{f}(u, 1) & =\left\{x \in \mathbb{F}_{2}^{n} \mid \Delta_{u} f(x)=1\right\}
\end{aligned}
$$

of sizes $n_{0}=\eta_{f}(u)=2^{n} \delta_{f}(u, 0)$ and $n_{1}=2^{n}-\eta_{f}(u)=2^{n} \delta_{f}(u, 1)$.
First assume $n_{0} \geq n_{1}$. To convert f to a function that has u as a linear structure, we have to change at least $\frac{n_{1}}{2}$ values, and that suffices: To see this
let $D_{f}(u, 1)=M_{1}^{\prime} \cup M_{1}^{\prime \prime}$ be decomposed into any two subsets of the same size, where $x \in M_{1}^{\prime} \Leftrightarrow x+u \in M_{1}^{\prime \prime}, \# M_{1}^{\prime}=\# M_{1}^{\prime \prime}=\frac{n_{1}}{2}$; then the function

$$
f^{\prime}(x):= \begin{cases}f(x)+1 & \text { for } x \in M_{1}^{\prime} \\ f(x) & \text { else }\end{cases}
$$

has u as a linear structure:
$\Delta_{u} f^{\prime}(x)=f^{\prime}(x+u)+f^{\prime}(x)=\left\{\begin{array}{lll}f(x+u)+f(x) & \text { for } x \in M_{0}, \\ f(x+u)+f(x)+1=0 & \text { for } x \in M_{1}^{\prime}, \\ f(x+u)+1+f(x)=0 & \text { for } x \in M_{1}^{\prime \prime},\end{array}\right.$ and this cannot be got with less changes.

If $n_{0}<n_{1}$, in the same way we need $\frac{n_{0}}{2}$ changes. Therefore the distance of f to any function g, that has u as a linear structure, is

$$
d(f, g) \geq n_{f}(u):=\min \left\{\frac{n_{0}}{2}, \frac{n_{1}}{2}\right\}=2^{n-1} \cdot \min \left\{\delta_{f}(u, 0), \delta_{f}(u, 1)\right\}
$$

and this value is assumed by a suitable g. We conclude

$$
\rho_{f}=\min \left\{n_{f}(u) \mid u \in \mathbb{F}_{2}^{n}-\{0\}\right\}
$$

Since always $n_{0}+n_{1}=2^{n}$, we have $n_{f}(u) \leq 2^{n-2}$. We have shown the first statement of:

Proposition 4 (Meier/Staffelbach, Eurocrypt 89) The linearity distance of a Boolean function $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}$ is

$$
\rho_{f} \leq 2^{n-2}
$$

Equality holds, if and only if f is perfectly nonlinear.
Proof. We have to show the second statement: In the count above for each vector $u \in \mathbb{F}_{2}^{n}-\{0\}$ we have $n_{0}=\delta_{f}(u, 0)=n_{1}=\delta_{f}(u, 1)=2^{n-1}$. \diamond

Furthermore

$$
\rho_{f}=2^{n-1} \cdot \min \left\{\delta_{f}(u, v) \mid u \in \mathbb{F}_{2}^{n}-\{0\}, v \in \mathbb{F}_{2}\right\} .
$$

Let this minimum be taken in $\left(u_{0}, v_{0}\right)$, i. e. $\rho_{f}=2^{n-1} \cdot \delta_{f}\left(u_{0}, v_{0}\right)$, then $\delta_{f}\left(u_{0}, v_{0}+1\right)=1-\delta_{f}\left(u_{0}, v_{0}\right)$ is maximum, whence $=\Omega_{f}$. We conclude:

Proposition 5 The linearity distance ρ_{f} of a Boolean function f is tied to the differential potential Ω_{f} by the formula:

$$
\rho_{f}=2^{n-1} \cdot\left(1-\Omega_{f}\right)
$$

