
Chapter 1

Classic Pseudorandom
Generators: Congruential
Generators and Feedback
Shift Registers

“Classic” (pseudo-) random generators are algorithms that generate “pseu-
dorandom” numbers or bits for use in statistical applications or simulations
instead of “true” random numbers or bits. For this kind of applications their
statistical properties are excellent. The standard references are [2] and [3].

However the requirements of cryptology are much stronger. The methods
of cryptanalysis mercilessly reveal the weaknesses of classic pseudorandom
generators, and make them useless for naive direct cryptographic applica-
tion.

This chapter introduces the best known classic pseudorandom generators
and derives their most important properties.
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Figure 1.1: A simple model of pseudorandom generation. The state is an
element of a setM, changing after each step according to the state transition
algorithm M �! M. The output (of each step) is an element of an output
alphabet ⌃.
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1.1 General Discussion of Bitstream Ciphers

As a first example of a bitstream cipher we encountered XOR in Part I of
these lectures. SageMath code is in Appendix E.1 of Part II.

plaintext bits

a1a2a3 . . .

k1k2k3 . . .

key bits

c1c2c3 . . .

ciphertext bits
ci = ai + ki
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Figure 1.2: The principle of XOR encryption

In the twenties of the 20th century XOR ciphers were invented to encrypt
teleprinter messages. These messages were written on five-hole punched
tapes as in Figure 1.3, each column representing a five-bit-block. Another
punched tape provided the key stream. Vernam filed this procedure as a
U. S. patent in 1918. He used a key tape whose ends were glued together, re-
sulting in a periodic key stream. Mauborgne immediately recognized that
a nonperiodic key is obligatory for security.
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Figure 1.3: Punched tape—each column represents a five-bit character

In its strongest form, the one-time pad, XOR encryption is an example of
perfect security in the sense of Shannon, see Part I, Section 10. As algorithm
A5 or E0 XOR helps to secure mobile phones or the Bluetooth protocol for
wireless data transmission. As RC4 it is part of the SSL protocol that (often)
encrypts client-server communication in the World Wide Web, and of the
PKZIP compression software. There are many other current applications,
not all of them satisfying the expected security requirements.

The scope of XOR encryption ranges from simple ciphers that
are trivially broken to unbreakable ciphers.
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Advantages of XOR ciphers

• Encryption and decryption are done by the same algorithm: Since
ci = ai + ki also ai = ci + ki. Thus decryption consists of adding
key stream and ciphertext (elementwise binary).

• The method is extremely simple to understand and to implement

• . . . and very fast—provided that the key stream is available. For
high transfer rates one may precompute the key stream at both
ends of the line.

• If the key stream is properly chosen the security is high.

Pitfalls

• XOR ciphers are vulnerable under known plaintext attacks: each
correctly guessed plaintext bit reveals a key bit.

• If the attacker knows a piece of plaintext she also knows the cor-
responding piece of the key stream, and then is able to exchange
this plaintext at will. For example she might replace “I love you”
by “I hate you”, or replace an amout of 1000$ by 9999$. In other
words the integrity of the message is poorly protected. (To pro-
tect message integrity the sender has to implement an extended
procedure.)

• XOR ciphers provide no di↵usion in the sense of Shannon’s crite-
ria since each plaintext bit a↵ects the one corresponding plaintext
bit only.

• Each reuse of a part of the key sequence (also in form of a periodic
repetition) opens the door for an attack. The historical successes
in breaking stream ciphers almost always used this e↵ect, for
example the attacks on encrypted teleprinters in World War II,
or the project VENONA during the Cold War.

A remark on the first item, the vulnerability for attacks with known
plaintext: The common ISO character set for texts has a systematic weak-
ness. The 8-bit codes of the lower-case letters a..z all start with 011, of the
upper-case letters A..Z, with 010. A supposed sequence of six lower-case
letters (no matter which) reveals 6 · 3 = 18 key bits.

By the way the appearance of many zeroes in the leading bits
of the bytes is an important identifying feature of texts in many
European languages.

In other words: We cannot prevent the attacker from getting or guessing
a good portion of the plaintext. Thus the security against an attack with
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known plaintext is a fundamental requirement for an XOR cipher, even more
than for any other cryptographic procedure.

This being said the crucial question for a pseudorandom sequence, or for
the pseudorandom generator producing it, is:

Is it possible to determine some more bits from a (maybe frag-
mented) chunk of the sequence?

The answer for the “classic” pseudorandom generators will be YES. But we’ll
also learn about pseudorandom generators that—supposedly—are crypto-
graphically secure in this sense.
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1.2 Methods for Generating a Key Stream

The main naive methods for generating the key stream are:

• periodic bit sequence,

• running-text,

• “true” random sequence.

A better method uses a

• pseudorandom sequence

and leads to really useful procedures. The essential criterion is the quality
of the random generator.

Note We sometimes use the term “random generator” for an algorithm
that produces pseudorandom sequences (of bits or numbers). The more
correct denomination is “pseudorandom generator”.

Periodic Bit Sequence

A periodically repeated (longer or shorter) bit sequence serves as key. Tech-
nically this is a Bellaso cipher over the alphabet F2. The classical crypt-
analytic methods for periodic polyalphabetic ciphers apply, such as period
analysis or probable word.

For an example see XOR in Part I.

Known or probable plaintext easily breaks periodic XOR encryp-
tion.

MS Word and Periodic XOR

The following table (generated ad hoc by simple character counts) shows
the frequencies of the most frequent bytes in MS Word files.

byte (hexadecimal) bits frequency

00 00000000 7–70%
01 00000001 0.8–17%
20 (space) 00100000 0.8–12%
65 (e) 01100101 1–10%
FF 11111111 1–10%

Note that these frequencies relate to the binary files, heavily depend on
the type of the document, and may change with every software version. The
variation is large, we often find unexpected peaks, and all bytes 00–FF occur.
But all this doesn’t matter here since we observe long chains of 00 bytes.
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For an MS Word file that is XOR encrypted with a periodically repeated
key the ubiquity of zero bits suggests an e�cient attack: Split the stream
of ciphertext bits into blocks corresponding to the length of the period and
add the blocks pairwise. If one of the plaintext blocks essentially consists of
0’s, then the sum is readable plaintext. Why? Consider the situation

. . . block 1 . . . block 2 . . .
plaintext: . . . a1 . . . as . . . 0 . . . 0 . . .

key: . . . k1 . . . ks . . . k1 . . . ks . . .
ciphertext: . . . c1 . . . cs . . . c01 . . . c0s . . .

where ci = ai + ki and c0i = 0 + ki = ki for i = 1, . . . , s. Thus the key
reveals itself in block 2, however the attacker doesn’t recognize this yet. But
tentatively paarwise adding all blocks she gets (amongst other things)

ci + c0i = ai + ki + ki = ai for i = 1, . . . , s,

that is, a plaintext block. If she realizes this (for example recognizing typical
structures), then she recognizes the key k1, . . . , ks.

Should it happen that the sum of two ciphertext blocks is zero then the
ciphertext blocks are equal, and so are the corresponding plaintext blocks.
The probability is high that both of them are zero. Thus the key could
immediately show through. To summarize:

XOR encryption with a periodic key stream is quite easily broken
for messages with a known structure.

This is true also for a large period, say 512 bytes = 4096 bits, in spite of the
hyperastronomically huge key space of 24096 di↵erent possible keys.

Running-Text Encryption

A classical approach to generating an aperiodic key is taking an existing
data stream, or file, or text, that has at least the length of the plaintext. In
classical cryptography this method was called running-text encryption. We
won’t repeat the cryptanalytic techniques but summarize:

XOR encryption with running-text keys is fairly easily broken.

True Random Sequence

The extreme choice for a key is a true random sequence of bits as key stream.
Then the cipher is called (binary) one-time pad (OTP). In particular no
part of the key stream must be repeated at any time. The notation “pad”
comes from the idea of a tear-o↵ calendar—each sheet is destroyed after use.
This cipher is unbreakable, or “perfectly secure”. Shannon gave a formal
proof of this, see Part I, Section 10.
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Without mathematical formalism the argument is as follows: The ci-
phertext divulges no information about the plaintext (except the length). It
could result from any plaintext of the same length: simply take the (binary)
di↵erence of ciphertext and alleged plaintext as key. Consider the ciphertext
c = a + k with plaintext a and key k, all represented by bitstreams and
added bit by bit as in Figure 1.2. For an arbitrary di↵erent plaintext b the
formula c = b+ k0 likewise shows a valid encryption using k0 = b+ c as key.

This property of the OTP could be used in a scenario of forced decryp-
tion (also known as “rubber hose cryptanalysis”) to produce an innocuous
plaintext, as exemplified in Figure 1.4.

If the one-time pad is perfect—why don’t we use it in any case and forget
of all other ciphers?

• The key management is unwieldy: Key agreement becomes a severe
problem since the key is as long as the plaintext and awkwardly to
memorize. Thus the communication partners have to agree on the key
stream prior to transmitting the message, and store it. Agreeing on a
key only just in time needs a secure communication channel—but if
there was one why not use it to transmit the plaintext in clear?

• The key management is inappropriate for mass application or multi-
party communication because of its complexity that grows with each
additional participant.

• The problem of message integrity requires an extended solution for
OTP like for any XOR cipher.

There is another, practical, problem when encrypting on a computer:
How to get random sequences? “True random” bits arise from physical events
like radioactive decay, or thermal noise on an optical sensor. The apparently
deterministic machine “computer” can also generate true random bits, for
instance by special chips that produce usable noise. Moreover many events
are unpredictable, such as the exact mouse movements of the user, or arriv-
ing network packets that, although not completey random, contain random
ingredients that may be extracted. On Unix systems these random bits are
provided by /dev/random.

However these random bits, no matter how “true”, are not that useful for
encryption by OTP. The problem is on the side of the receiver who cannot
reproduce the key. Thus the key stream must be transmitted independently.

There are other, useful, cryptographic applications of “true” random
bits: Generating keys for arbitrary encryption algorithms that are unpre-
dictable for the attacker. Many cryptographic protocols rely on “nonces”
that have no meaning except for being random, for example the initializa-
tion vectors of the block cipher modes of operation, or the “challenge” for
strong authentication (“challenge-response protocol”).
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Plain bits and text:

01010100 01101000 01101001 01110011 00100000 01101101 This m

01100101 01110011 01110011 01100001 01100111 01100101 essage

00100000 01101001 01110011 00100000 01101000 01100001 is ha

01111010 01100001 01110010 01100100 01101111 01110101 zardou

01110011 00101110 s.

Key bits:

11001000 11010110 00110011 11000000 00111011 10001110

00001000 11101111 01001001 11100101 10111100 10111001

00010010 11000110 01110011 11010111 11000100 01100000

11100110 00010111 01101010 10111011 00010101 11011000

11110000 01000010

Cipher bits:

10011100 10111110 01011010 10110011 00011011 11100011

01101101 10011100 00111010 10000100 11011011 11011100

00110010 10101111 00000000 11110111 10101100 00000001

10011100 01110110 00011000 11011111 01111010 10101101

10000011 01101100

Pseudokey bits:

11001000 11010110 00110011 11000000 00111011 10001110

00001000 11101111 01001001 11100101 10111100 10111001

00010010 11000110 01110011 11010111 11000101 01101111

11110010 00011001 01111011 10101010 00010101 11011000

11110000 01000010

Pseudodecrypted bits and text:

01010100 01101000 01101001 01110011 00100000 01101101 This m

01100101 01110011 01110011 01100001 01100111 01100101 essage

00100000 01101001 01110011 00100000 01101001 01101110 is in

01101110 01101111 01100011 01110101 01101111 01110101 nocuou

01110011 00101110 s.

Figure 1.4: XOR encryption of a hazardous message, and an alleged alter-
native plaintext
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Pseudorandom Sequence

For XOR encryption—as approximation to the OTP—algorithmically gen-
erated bit sequences are much more practicable. But the attacker should
have no means to distinguish them from true random sequences. This is the
essence of the concept of pseudorandomness, and generating pseudorandom
sequences is of fundamental cryptologic relevance.

XOR encryption with a pseudorandom key stream spoils the
perfect security of the one-time pad. But if the pseudorandom
sequence is cryptographically strong (Chapter 4) the attacker
has no chance to exploit this fact.

To be useful for cryptographic purposes the pseudorandom key stream
must depend on parameters the attacker has no access to and that represent
(parts of) the cryptographic key. Such parameters might be, see Figure 1.5
that extends the basic model of a pseudorandom generator:

• the initial value of the state,

• parameters the transition algorithm depends on.

Figure 1.5: Secret parameters for a pseudorandom generator
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1.3 Linear Congruential Generators

As a first important class of elementary—“classical”—pseudorandom num-
ber generators we consider one-step recursive formulas that use linear con-
gruences. They are very fast, have long periods, and their quality is easily
analyzed due to their plain structure.

This simple formula generates a sequence of pseudorandom numbers:

(1) xn = axn�1 + b mod m.

The recursive sequence (xn)n2N depends on four integer parameters:

• the module m where m � 2,

• the multiplier a 2 [0 . . .m� 1],

• the increment b 2 [0 . . .m� 1],

• the initial value x0 2 [0 . . .m� 1].

We call this recursive formula a linear congruential generator, in the
case b = 0 also a multiplicative generator, in the case b 6= 0, a mixed

congruential generator. Furthermore we call

s :Z/mZ �! Z/mZ, s(x) = ax+ b mod m.

the generating function of the generator. Formula (1) then becomes

xn = s(xn�1).

Programming a linear congruential pseudorandom generator is extremely
easy, even in assembler languages; for Sage see Sage sample 1.1. The algo-
rithm works very fast. Moreover the pseudorandom numbers are statistically
good if the parameters m, a, b are suitably chosen. In contrast the choice of
the initial value is unrestricted. This freedom allows a reasonable variation
of the generated pseudorandom numbers.

Use of the pseudorandom sequence as a bitstream for XOR encryption
requires at least that we consider the initial value x0, or the complete pa-
rameter set (m, a, b, x0), as e↵ective key, and keep it secret, cf. Figure 1.5.

Remarks and Examples

1. Since xn may assume only m di↵erent values the sequence is periodic
with a period length  m; including a possible preperiod.

2. Choosing a = 0 obviously doesn’t make sense. Also for a = 1 we get
a useless sequence, namely x0, x0 + b, x0 + 2b, x0 + 3b, . . ., that also
modm contains several regular subsequences.
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Sage Example 1.1 Generating pseudorandom numbers by a linear congru-
ential random generator

def lcg(m,a,b,s,n):

x = s

outlist = []

for i in range (0,n):

y = (a*x + b) % m

outlist.append(y)

x = y

return outlist

3. For m = 13, a = 6, b = 0, x0 = 1 we get the sequence

6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1

of period length 12 that looks like a fairly random permutation of the
integers 1 to 12, despite the small module.

4. Choosing the multiplier a = 7 instead of 6 we get a much less sympa-
thic sequence:

7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1.

5. If a and m are coprime, then the sequence is purely periodic (no prepe-
riod). For a mod m is invertible, hence ac ⌘ 1 (mod m) for some c.
Thus always xn�1 = cxn � cb mod m. If xµ+� = xµ with µ � 1, then
also xµ+��1 = xµ�1 etc., finally x� = x0.

6. By induction we immediately get

(2) xk = akx0 + (1 + a+ · · ·+ ak�1) · b mod m

for all k—a definite warning about the poor randomness of the se-
quence: Formula (2) allows direct access to any element of the se-
quence. Note that the coe�cient of b is (ak � 1)/(a � 1) where the
division is modm.

7. Let m = 2e and a be even. Then

xk = (1 + a+ · · ·+ ae�1) · b mod m

for all k � e, hence, after a certain preperiod, the period has length
1. More generally common divisors of a and m reduce the period. We
want to avoid this e↵ect.
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8. Let d be a divisor of m. Then the sequence yn = xn mod d is the
analogous congruential sequence for the module d, generated by the
formula yn = ayn�1 + b mod d. Hence the sequence (xn), if considered
mod d, has a period  d that might be very short.

9. This e↵ect is especially inconvenient in the case of a power m = 2e:
Then the least significant bit of xn has a period of length at most
2, hence alternates between 0 and 1, or is constant. And the k least
significant bits together have a period of at most 2k.

10. The innocuously looking example m = 232, a = 4095 = 212 � 1,
b = 12794 exhibits an extremely bad choice of parameters: From
x0 = 253 we get x1 = 1048829 and x2 = 253 = x0.

Preferred modules are

• m = 232 that exhausts the 32 bit range and moreover is computation-
ally e�cient,

• m = 231 � 1 that is the maximum 32 bit integer, and computationally
almost as e�cient as a power of 2. Another advantage: This number is
prime (claimed by Mersenne in 1644, proved by Euler in 1772), and
this enhances the quality of the pseudorandom sequence. More gener-
ally these arguments apply to Fermat primes 2k + 1 and Mersenne

primes 2k � 1. The next prime of this kind is 261 � 1.

Table 1.1 shows the first 100 members of a sequence that is generated
with the module m = 231 � 1 = 2147483647, the multiplier a = 397204094,
the increment b = 0, and the initial value x0 = 58854338, Sage code sam-
ple 1.2. Figure 1.6 gives a visual impression of this information. We see that
the sequence doesn’t follow any obvious rules. However it is clear that such
a visual impression is not a su�cient criterion for the quality of a pseudo-
random sequence.

Sage Example 1.2 Using a linear congruential random generator

sage: mm = 2**31 - 1

sage: aa = 397204094

sage: bb = 0

sage: seed = 58854338

sage: seq = lcg(mm,aa,bb,seed,100); seq
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Table 1.1: 100 members of a linear congruential sequence

1292048469 319941267 173739233 1992841820
345565651 2011011872 31344917 592918912
1827933824 1691830787 857231706 1416540893
1184833417 145217588 589958351 1776690121
1330128247 558009026 1479515830 1197548384
1627901332 929586843 19840670 1268974074
1682548197 760357405 666131673 1642023821
787305132 1314353697 167412640 1377012759
963849348 971229179 247170576 1250747100
703109068 1791051358 1978610456 1746992541
177131972 1844679385 1328403386 1811091691
1586500120 1175539757 74957396 753264023
468643347 821920620 1269873360 963348259
1698955999 139484430 30476960 1327705603
1266305157 1337811914 1808105128 640050202
37935526 1185470453 2111728842 380228478

808553600 934194915 824017077 881361640
1492263703 414709486 298916786 1883338449
771128019 558671080 1935988732 798347213
120356246 1378842534 37149011 272238278
1190345324 1006355270 1161592162 1079789655
220609946 1918105148 791775291 979447727
1160648370 779600833 1170336930 1271974642
375813045 1089009771 280197098 1144249742
1236647368 1729816359 650188387 1714906064
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Figure 1.6: A linear congruential sequence. Horizontal axis: counter from 0
to 100, vertical axis: size of the integer from 0 to 231 � 1.
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1.4 The Maximum Period Length

Under what conditions does the period of a linear congruential genera-
tor with module m attain the theoretic maximum length m? A multi-
plicative generator will never attain this period since the output 0 repro-
duces itself forever. Thus for this question we consider mixed generators
with nonzero increment. As the trivial generator with generating function
s(x) = x+ 1 mod m shows the period length m really occurs; on the other
hand this example also shows that a period of maximum length is insu�-
cient as a proof of quality for a random generator. Nevertheless maximum
period is an important criterion, and the general result is easily stated:

Proposition 1 (Hull/Dobell 1962, Knuth) The linear congruential
generator with generating function s(x) = ax + b mod m has period m if
and only if the following three conditions hold:

(i) b and m are coprime.

(ii) Each prime divisor p of m divides a� 1.

(iii) If 4 divides m, then 4 divides a� 1.

From the first condition we conclude b 6= 0, hence the generator is mixed.
Before giving the proof of the proposition we state and prove a lemma.
(We’ll use two more lemmas from Part III, Appendix A.1, that we state
here without proofs.)

Lemma 1 Let m = m1m2 with coprime natural numbers m1 and
m2. Let �, �1, and �2 be the periods of the congruential generators
xn = s(xn�1) mod m, modm1, modm2 with initial value x0 in each case.
Then � is the least common multiple of �1 and �2.

Proof. Let x(1)n and x(2)n be the corresponding outputs for m1 and m2. Then

x(i)n = xn mod mi. Since xn+� = xn for all su�ciently large n we imme-
diately see that � is a multiple of �1 and �2. On the other hand from
m | t () m1,m2 | t we get

xn = xk () x(i)n = x(i)k for i = 1 and 2.

Hence � is not larger than the least common multiple of �1 and �2. 3

The two lemmas without proofs:

Lemma 2 Let n = 2e with e � 2.

(i) If a is odd, then

a2
s ⌘ 1 (mod 2s+2) for all s � 1.
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(ii) If a ⌘ 3 (mod 4), then n | 1 + a+ · · ·+ an/2�1.

Lemma 3 Let p be prime, and e, a natural number with pe � 3. Assume pe

is the largest power of p that divides x � 1. Then pe+1 is the largest power
of p that divides xp � 1.

Proof of the proposition For both directions we may assume m = pe

where p is prime by Lemma 1.
“=)”: Each residue class in [0 . . .m � 1] occurs exactly once during a

full period. Hence we may assume x0 = 0. Then

xn = (1 + a+ · · ·+ an�1) · b mod m for all n.

Since xn assumes the value 1 for some n we conclude that b is invertible
modm, or that b and m are coprime.

Let p |m. From xm = 0 we now get m | 1 + a+ · · ·+ am�1, hence

p |m | am � 1 = (a� 1)(1 + a+ · · ·+ am�1).

Fermat’s little theorem gives ap ⌘ a (mod p), hence

am = ap
e ⌘ ap

e�1 ⌘ . . . ⌘ a (mod p),

hence p | a� 1. This proves (ii).
Statement (iii) corresponds to the case p = 2 with e � 2. From (ii)

we get that a is even. The assumption a ⌘ 3 (mod 4) would result in the
contradiction xm/2 = 0 by Lemma 2. Hence a ⌘ 1 (mod 4).

“(=”: Again we may assume x0 = 0. Then

xn = 0 () m | 1 + a+ · · ·+ an�1.

In particular the case a = 1 is trivial. Hence assume a � 2. Then

xn = 0 () m | a
n � 1

a� 1
.

We have to show:

• m | am�1
a�1 —then �|m;

• m doesn’t divide am/p�1
a�1 —then � � m since m is a power of p.

Let ph be the maximum power that divides a� 1. By Lemma 3 we conclude

ap ⌘ 1 (mod ph+1), ap 6⌘ 1 (mod ph+2)

and successively

ap
k ⌘ 1 (mod ph+k), ap

k 6⌘ 1 (mod ph+k+1)
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for all k. In particular ph+e | am � 1. Since no larger power than ph divides

a � 1 we conclude that m = pe | am�1
a�1 . The assumption pe | am/p�1

a�1 leads to

the contradiction pe+h | ape�1 � 1. }

The main application of Proposition 1 is for modules that are powers of
2:

Corollary 1 (Greenberger 1961) For the module m = 2e with e � 2
the period m is attained if and only if:

(i) b is odd.

(ii) a ⌘ 1 (mod 4).

For prime modules Proposition 1 is useless, as the following corollary
shows.

Corollary 2 For a prime module m the period m is attained if and only if
b is coprime with m and a = 1.

This (lousy) result admits an immediate generalization to squarefree
modules m:

Corollary 3 For a squarefree module m the period m is attained if and only
if b is coprime with m and a = 1.

In summary Proposition 1 shows how to get the maximum possible pe-
riod, and Corollary 1 provides a class of half-decent useful examples.
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1.5 The Maximum Period of a Multiplicative Gen-
erator

A multiplicative generator xn = axn�1 mod m never has period m since the
output 0 reproduces itself. So what is the largest possible period? In the
following proposition � is the Carmichael function, and this is exactly the
context where it occurred for the first time.

Proposition 2 (Carmichael 1910) The maximum period of a multi-
plicative generator with generating function s(x) = ax mod m is �(m). A
su�cient condition for the period �(m) is:

(i) a is primitive modm.

(ii) x0 is relatively prime to m.

Proof. We have xn = anx0 mod m. If k = ordm a is the order of a in the
multiplicative group of Z/mZ, then xk = x0. Thus the period is  k  �(m).
Now assume a is primitive mod m, hence 1, a, . . . , a�(m)�1 mod m are dis-
tinct, and let x0 be relatively prime to m. Then the xn are distinct for
n = 0, . . . ,�(m)� 1, and the period is �(m). 3

Corollary 1 Let m = p prime. Then the generator has the maximum period
�(p) = p� 1 if and only if:

(i) a is primitive mod p.
(ii) x0 6= 0.

Thus for prime modules we are in a comfortable situation: The period
misses the maximum value for one-step recursive generators only by 1, and
any initial value is good except 0.

Section 1.9 will broadly generalize this result.
How to find a primitive element is comprehensively discussed in Ap-

pendix A of Part III.
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1.6 Feedback Shift Registers

Feedback shift registers (FSR) are a classical and popular method of gener-
ating pseudorandom sequences. The method goes back to Golomb in 1955
[2], but is often named after Tausworthe who picked up the idea in a 1965
paper. FSRs are especially convenient for hardware implementation.

An FSR of length l is specified by a Boolean function f: Fl
2 �! F2, the

“feedback function”. Figure 1.7 shows the mode of operation—representing
f by a Boolean circuit yields an explicit construction plan. The output
consists of the rightmost bit u0, all the other bits are shifted to the right by
one position, and the leftmost cell is filled by the bit ul = f(ul�1, . . . , u0).
Thus the recursive formula

(3) un = f(un�1, . . . , un�l) for n � l

represents the complete sequence.

ul�1 . . . . . . u2 u1 u0-

ul

- u0

◆
✓

⇣
⌘f

6 6 6 6

. . . . . .

- ---

Figure 1.7: A feedback shift register (FSR)

The bits u0, . . . , ul�1 form the start value. The “key expansion” trans-
forms the short sequence u = (u0, . . . , ul�1) (the e↵ective key) of length l
into a key stream u0, u1, . . . of arbitrary length. In a cryptographic context
the bits u0, u1, . . . form the key stream. In other contexts it might be un-
necessary to conceal the output bits, but even then hiding the initial state
might make sense, starting the output sequence at ul. Additionally in a
cryptographic context treating the internal parameters, that is the feedback
function f or some of its coe�cients, as components of the key makes sense.
Then the e↵ective key length is larger than l.

In this respect the realization in hardware di↵ers from a software imple-
mentation: Hardware allows using an adjustable feedback function only by
complex additional circuits. Thus in the hardware case we usually assume
an unchangeable feedback function, and (at least in the long run) we cannot
prevent the attacker from figuring it out. In contrast a software implementa-
tion allows a comfortable change of the feedback function at any time such
that it may serve as part of the key.
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. . . . . .

tapsL99

- -

Figure 1.8: Simple graphical representation of an LFSR

For a Sage example we use the procedure fsr from Appendix C.1 and the
construction of a Boolean function from Appendix E.3 of Part II. (Attach
the modules Bitblock.sage, boolF.sage, FSR.sage.)

Sage Example 1.3 Generating a bitsequence by a nonlinear FSR

sage: f2 = BoolF([1,1,1,0,1,1,0,0,0,1,0,0,0,1,1,0])

sage: start = [0,1,1,1]

sage: seq = fsr(f2,start,20); seq

[1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0]

The simplest and best understood instances of FSRs are the linear feed-
back shift registers (LFSR). Their feedback functions f are linear. From
Part II we know that a linear function

f : Fl
2 �! F2

is simply a partial sum from an l-bit block:

(4) f(un�1, . . . , un�l) =
lX

j=1

ajun�j ,

where the coe�cients aj are 0 or 1. If I is the subset of indices j with aj = 1,
then the iteration (3) takes the form

(5) un =
X

j2I
un�j .

A simple graphical representation of an LFSR is shown in Figure 1.8. Here
the subset I defines the contacts (“taps”) that feed the respective cell con-
tents into the feedback sum.

In SageMath we implement a special class LFSR, see Appendix C.1 whose
use is demonstrated in the code sample 1.4.

For a good choice of the parameters, see Section 1.9, the sequence has a
period of about 2l, the number of possible di↵erent states of the register, and
statistical tests are hardly able to distinguish it from a uniformly distributed
true random sequence, see Section 1.10. It is remarkable that such a simple
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Sage Example 1.4 Generating a bitsequence by a linear FSR

sage: coeff = [0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,1]

sage: reg = LFSR(coeff)

sage: start = [0,1,1,0,1,0,1,1,0,0,0,1,0,0,1,1]

sage: reg.setState(start)

sage: bitlist = reg.nextBits(20); bitlist

[1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1]

approach generates pseudorandom sequences of fairly high quality! Of course
the initial state u = (0, . . . , 0) is inappropriate. For an initial state 6= 0 the
maximum possible period is 2l � 1, see Section 1.9.

For using an LFSR for bitstream encryption the secret inner
parameters—the coe�cients a1, . . . , al—as well as the initial state
u0, . . . , ul�1 together constitute the key. In contrast the length l of the reg-
ister is assumed as known to the attacker. Beware of Section 2.3!
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1.7 Multistep generators

Multistep (linear recursive) generators are a common generalization
of linear congruential generators and LFSRs. A convenient framework for
their treatment is a finite ring R (commutative with 1); this comprises not
only the residue class rings Z/mZ but also the finite fields including the
prime fields Fp.

An r-step linear recursive generator outputs a sequence (xn) in R by the
rule

xn = a1xn�1 + · · ·+ arxn�r + b.

The parameters of this procedure are

• the recursion depth r (assume ar 6= 0),

• the coe�cient tuple a = (a1, . . . , ar) 2 Rr,

• the increment b 2 R,

• a start vector (x0, . . . , xr�1) 2 Rr.

The linear recursive generator is called homogeneous if the increment
b = 0, inhomogeneous otherwise.

Figure 1.9 visualizes the operation of a linear recursive generator in anal-
ogy with an LFSR.

xn+r�1 xn+r�2 . . . . . . xn+1 xn -
output

xn�1 . . . x0

linear feedback function

-

n+ � n+ � . . . n� +� n+� b
6
⇥a1

6
⇥a2

6
⇥ar�1

6
⇥ar

Figure 1.9: A linear recursive generator

Inhomogeneous linear recursive generators easily reduce to homogeneous
ones, but only with an additional recursion step: Subtracting the two equa-
tions

xn+1 = a1xn + · · ·+ arxn�r+1 + b,

xn = a1xn�1 + · · ·+ arxn�r + b,

we get
xn+1 = (a1 + 1)xn + (a2 � a1)xn�1 · · ·+ (�ar)xn�r.



K. Pommerening, Bitstream Ciphers 24

Example In the case r = 1, xn = axn�1 + b, this formula becomes

xn = (a+ 1)xn�1 � axn�2.

In the following we often neglect the inhomogeneous case.
In the homogeneous case we introduce the state vectors

x(n) = (xn, . . . , xn+r�1)t and write

x(n) = Ax(n�1) for n � 1,

using the companion matrix

A =

0

BBB@

0 1 . . . 0
. . .

. . .

1
ar ar�1 . . . a1

1

CCCA
.

This suggests the next step of generalization: the matrix generator

with parameters:

• an r ⇥ r-matrix A 2 Mr(R),

• a start vector x0 2 Rr.

The output sequence is generated by the formula

xn = Axn�1 2 Rr.
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1.8 General linear generators

Even more general (and conceptually simpler) is the abstract algebraic ver-
sion, the general linear generator. This is the setting:

• a ring R (commutative with 1),

• an R-module M ,

• an R-linear map A : M �! M ,

• a start value x0 2 M .

From this we generate a sequence (xn)n2N by the formula

(6) xn = Axn�1 for n � 1.

Examples

1. For a homogeneous linear congruential generator we have

R = Z/mZ, M = R (r = 1), A = (a).

2. For an inhomogeneous linear congruential generator we have

R = Z/mZ, M = R2 (r = 2), A =

✓
0 1
�a a+ 1

◆
.

3. For an LFSR we have

R = F2, M = Fl
2 (r = l), A = the companion matrix,

that contains only 0’s and 1’s.

In the case of a finite M the recursion (6) can assume only finitely
many di↵erent values, therefore (after a potential preperiod) must become
periodic.

Proposition 3 Let M be a finite R-module and A : M �! M be linear.
Then the following statements are equivalent:

(i) All sequences generated by the corresponding general linear generator
(6) are purely periodic.

(ii) A is bijective.
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Proof. “(i) =) (ii)”: Assume that A is not bijective. Since M is finite A is
not surjective. Hence there is an x0 2 M �A(M). Then x0 = Axt can never
occur, hence the sequence is not purely periodic.

“(ii) =) (i)”: Let A be bijective and x0, an arbitrary start vector. Let t
be the first index such that xt assumes a value that occured before, and let
s be the smallest index with xt = xs. Since xs = Axs�1 and xt = Axt�1 the
assumption s � 1 leads to

xt�1 = A�1xt = A�1xs = xs�1,

contradicting the minimality of t. 3

Looking at the companion matrix we immediately apply this result to
homogeneous multistep congruential generators, and in particular to LFSRs:

Corollary 1 A homogeneous linear congruential generator of recursion
depth r always generates purely periodic sequences if the coe�cient ar is
invertible in Z/mZ.

This is true also in the inhomogeneous case since the formula

xn�r = a�1
r (xn � a1xn�1 � · · ·� ar�1xn�r+1 � b)

reproduces the sequence in the reverse direction.

Corollary 2 An LFSR of length l generates only purely periodic sequences
if the rightmost tap is set (that is, al 6= 0).
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1.9 Matrix generators over finite fields

A matrix generator over a field K is completely specified by an r⇥ r matrix

A 2 Mr(K)

(except for the choice of the start vector x0 2 Kr). The objective of the
present section is the characterization of the sequences with maximum period
length.

In the polynomial ring K[T ] in one indeterminate T the set

{⇢ 2 K[T ] | ⇢(A) = 0}

is an ideal. Since K[T ] is a principal ring (even Euclidean) this ideal is
generated by a unique monic polynomial µ. This polynomial is called the
minimal polynomial of A. Since the matrix A is a zero of its own charac-
teristic polynomial � we have µ|�. If A is invertible, then the absolute term
of µ is 6= 0; otherwise µ would have the root 0, and A, the eigenvalue 0.

Lemma 4 Let K be a field, A 2 GLr(K), a matrix of finite order t, µ, the
minimal polynomial of A, s = degµ, R := K[T ]/µK[T ], and a 2 R, the
residue class of T . Then:

ak = 1 () µ|T k � 1 () Ak = 1.

In particular a 2 R⇥, t is also the order of a, and µ|T t � 1.

Proof. R is a K-algebra of dimension s. If µ = bsT s+ · · ·+b0 (where bs = 1),
then

µ� b0 = T · (bsT s�1 + · · ·+ b1).

Since b0 6= 0, the residue class T mod µ is invertible, hence a 2 R⇥. Since
ak is the residue class of T k all the equivalences follow. 3

Corollary 1 If K is a finite field with q elements, then

t  #R⇥  qs � 1  qr � 1.

From now on let K be a finite field with q elements. Then also the group
GLr(K) of invertible r⇥r-matrices is finite. The vector space Kr consists of
qr vectors. We know already that every sequence from the matrix generator
corresponding to A 2 GLr(K) is purely periodic. One full cycle consists of
the null vector 0 2 Kr alone. The remaining vectors in general distribute over
several cycles. If s is the length of such a cycle, and x0, the corresponding
start vector, then x0 = xs = Asx0. Hence As has the eigenvalue 1, and
consequently, A has as eigenvalue an s-th root of unity.
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Maybe all vectors 6= 0 are in a single cycle of the maximum possible
period length qr�1. In this case Asx = x for all vectors x 2 Kr if s = qr�1,
but not for a smaller exponent > 0. Hence t = qr � 1 is the order of A. This
shows:

Corollary 2 Let K be finite with q elements. Then:

(i) If the matrix generator for A and a start vector 6= 0 outputs a sequence
of period s, then A has as eigenvalue an s-th root of unity.

(ii) If there is an output sequence of period length qr � 1, then t = qr � 1
is the order of A.

Lemma 5 Let K be a finite field with q elements, and ' 2 K[T ] be an

irreducible polynomial of degree d. Then '|T qd�1 � 1.

Proof. The residue class ring R = k[T ]/'K[T ] is an extension field of degree
d = dimKR, hence has h := qd elements, and R contains at least one zero a
of ', namely the residue class of T . Since each x 2 R⇥ satisfies the equation
xh�1 = 1 we conclude that a is also a zero of T h�1�1. Hence ggT(', T h�1�1)
is not a constant. Since ' is irreducible '|T h�1 � 1. 3

Definition Let K be a finite field with q elements. A polynomial ' 2 K[T ]
of degree d is called primitive if ' is irreducible and is not a divisor
of T k � 1 for 1  k < qd � 1.

Theorem 1 Let K be a finite field with q elements and A 2 GLr(K). Then
the following statements are equivalent:

(i) The matrix generator for A generates a sequence of period qr � 1.

(ii) The order of A is qr � 1.

(iii) The characteristic polynomial � of A is primitive.

Proof. “(i) =) (ii)”: See Corollary 2 (ii).
“(ii) =) (iii)”: In Corollary 1 we now have t = qr � 1. Hence #R⇥ =

qs � 1, hence R is a field, and thus µ is irreducible. Moreover s = r, hence
µ = �, and µ is not a divisor of T k � 1 for 1  k < qr � 1 by Lemma 4.
Therefore µ is primitive.

“(iii) =) (i)”: Since � is irreducible, � = µ. The residue class a of T is a
zero of µ and has multiplicative order qr�1 by the definition of “primitive”.
Since taking the q-th power is an automorphism of the field R that fixes K
elementwise all the r powers aq

k
for 0  k < r are zeroes of µ, and they are

all di↵erent. Therefore they must represent all the zeroes, and they all have
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multiplicative order qr � 1. Hence A has no eigenvalue of lower order. By
Corollary 2 (i) there is no shorter period. 3

For an LFSR take A as the companion matrix as in Section 1.7. Hence
the characteric polynomial is T l � a1T l�1 � · · ·� al.

Corollary 1 An LFSR of length l generates a sequence of the maximum
possible period length 2l � 1 if and only if its characteristic polynomial is
primitive, and the start vector is 6= 0.

This result reduces the construction of LFSRs that generate maximum
period sequences to the construction of primitive polynomials over the field
F2.

The special case of dimension r = 1 describes a multiplicative generator
xn = axn�1 over the finite field K with q elements. The corresponding 1⇥ 1
matrix A = (a) is the multiplication by a. Thus a is the only eigenvalue,
and � = T � a 2 K[T ] is the characteristic polynomial. It is linear, hence
irreducible. Since

�|T k � 1 () a is a zero of T k � 1 () ak = 1,

� is primitive if and only if a is a generating element of the multiplica-
tive group K⇥, hence a primitive element. This proves the following slight
generalization of the corollary of Proposition 2:

Corollary 2 The multiplicative generator over K with multiplier a gener-
ates a sequence of period q � 1 if and only if a is primitive and the start
value is x0 6= 0.
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1.10 Statistical properties of LFSRs

The study of the statistical properties of LFSR sequences of maximum pe-
riod 2l � 1, where l is the length of the LFSR, goes back to Golomb [2].

Here are some results:

1. Each full period contains exactly 2l�1 ones and 2l�1 � 1 zeroes.

Proof Each of the 2l state vectors 2 Fl
2 (except 0) occurs exactly once,

corresponding to the integers in the interval [1 . . . 2l � 1]. Of these
integers 2l�1 are odd, the remaining ones are even, and their parities
yield the exact output sequence of the LFSR.

2. A run in a sequence is a constant subsequence of maximum length.

Example: . . . 0111110 . . . is a run of ones of length 5.

Noting that the pieces of length l of the LFSR sequence are exactly
the di↵erent state vectors 6= 0 we immediately see that a full period
contains:

• no run of length > l,

• exactly one run of 1’s and no run of 0’s of length l—otherwise
the zero state vector would occur, or the all-1 state would occur
more often than once,

• exactly one run of 1’s and exactly one run of 0’s of length l � 1,

• more generally exactly 2k�1 runs of 1’s or 0’s each of length l� k
for 1  k  l � 1,

• in particular exactly 2l�1 runs of length 1, exactly half of them
consisting of 0’s or 1’s.

3. For a periodic sequence x = (xn)n2N in F2 of period s the auto-

correlation w. r. t. the shift t is defined as

x(t) =
1

s
· [#{n | xn+t = xn}�#{n | xn+t 6= xn}]

=
1

s
·
s�1X

n=0

(�1)xn+t+xn

(as in Part II for Boolean functions). Consider a sequence x generated
by an LFSR of length l,

xn = a1xn�1 + · · ·+ alxn�l for n � l,

and the sequence yn = xn+t � xn of its di↵erences. This sequence is
obviously generated by the same LFSR. If the start values y0, . . . ,
yl�1 are all 0, then the y sequence is constant = 0, the t-th state
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vector x(t) = x(0), hence t is a multiple of the period, and x(t) = 1.

Otherwise—and if x has the maximum possible period s = 2l � 1—a
full period of y consists of exactly 2l�1 ones and 2l�1 � 1 zeroes by
Remark 1. Thus

x(t) =

(
1, if s|t,
�1

s , else.

Hence the auto-correlation is uniformly small, except for shifts by a
multiple of the period.

Golomb called these statements the three randomness postulates. They
tell us that the sequence is very uniformly distributed. Therefore electrical
engineers are fond of LFSR sequences of maximum period, and call them
PN sequences (= pseudo-noise sequences).

Executing the Sage code sample 1.4 with the parameter 1024 instead of
20 yields the output (without parentheses and commas):

11001000110101100011001111000000 00111011100011100000100011101111

01001001111001011011110010111001 00010010110001100111001111010111

11000100011000001110011000010111 01101010101110110001010111011000

11110000010000100010111100011110 10100111000001111000100001011000

01010101000101111110110011011101 11001001110111110001011000100010

11100100101111110011011001010011 00001100100001100110100011100100

11101000100101110110011011001010 11011100100110111001011100000011

00100010111101111000110000010001 01110100001110011111101000100101

00111010001111000100000000110110 10000101110101110001100000010001

11011011011110111001000110101001 10001111110110101010011111100001

11101110111101011001010110001010 00000100001001100110001110100110

00010100101110100000010101100100 10010110101011111110111111011101

11001010010100010010110111111110 10100101001111110110100100010001

10111100011001111001011111010110 01110111010100100010100101101111

01100111011000000111011111010000 11011101111111110000010001000100

10010111111110101011101110111111 01110010110000010001111001100111

The visualization in Figure 1.10 shows that the output looks quite random,
at least at first sight.

By the way the LFSR of this example generates a sequence of maximum
period 216 � 1 = 65535 since its characteristic polynomial

T 16 + T 14 + T 13 + T 11 + 1 2 F2

is primitive.
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Figure 1.10: An LFSR sequence


