1.4 The Maximum Period Length

Under what conditions does the period of a linear congruential generator with module \(m \) attain the theoretic maximum length \(m \)? A multiplicative generator will never attain this period since the output 0 reproduces itself forever. Thus for this question we consider mixed generators with nonzero increment. As the trivial generator with generating function \(s(x) = x + 1 \mod m \) shows the period length \(m \) really occurs; on the other hand this example also shows that a period of maximum length is insufficient as a proof of quality for a random generator. Nevertheless maximum period is an important criterion, and the general result is easily stated:

Proposition 1 (Hull/Dobell 1962, Knuth) The linear congruential generator with generating function \(s(x) = ax + b \mod m \) has period \(m \) if and only if the following three conditions hold:

(i) \(b \) and \(m \) are coprime.

(ii) Each prime divisor \(p \) of \(m \) divides \(a - 1 \).

(iii) If \(4 \) divides \(m \), then \(4 \) divides \(a - 1 \).

From the first condition we conclude \(b \neq 0 \), hence the generator is mixed. Before giving the proof of the proposition we state and prove a lemma. (We’ll use two more lemmas from Part III, Appendix A, that we state here without proofs.)

Lemma 1 Let \(m = m_1 m_2 \) with coprime natural numbers \(m_1 \) and \(m_2 \). Let \(\lambda, \lambda_1, \) and \(\lambda_2 \) be the periods of the congruential generators \(x_n = s(x_{n-1}) \mod m, \mod m_1, \mod m_2 \) with initial value \(x_0 \) in each case. Then \(\lambda \) is the least common multiple of \(\lambda_1 \) and \(\lambda_2 \).

Proof. Let \(x_n^{(1)} \) and \(x_n^{(2)} \) be the corresponding outputs for \(m_1 \) and \(m_2 \). Then \(x_n^{(i)} = x_n \mod m_i \). Since \(x_{n+\lambda} = x_n \) for all sufficiently large \(n \) we immediately see that \(\lambda \) is a multiple of \(\lambda_1 \) and \(\lambda_2 \). On the other hand from \(m \mid t \iff m_1, m_2 \mid t \) we get

\[
x_n = x_k \iff x_n^{(i)} = x_k^{(i)} \quad \text{for } i = 1 \text{ and } 2.
\]

Hence \(\lambda \) is not larger than the least common multiple of \(\lambda_1 \) and \(\lambda_2 \). \(\square \)

The two lemmas without proofs:

Lemma 2 Let \(n = 2^e \) with \(e \geq 2 \).

(i) If \(a \) is odd, then

\[
a^{2^s} \equiv 1 \pmod{2^{s+2}} \quad \text{for all } s \geq 1.
\]
(ii) If $a \equiv 3 \pmod{4}$, then $n \mid 1 + a + \cdots + a^{n/2-1}$.

Lemma 3 Let p be prime, and e, a natural number with $p^e \geq 3$. Assume p^e is the largest power of p that divides $x - 1$. Then p^{e+1} is the largest power of p that divides $x^p - 1$.

Proof of the proposition For both directions we may assume $m = p^e$ where p is prime by Lemma 1.

"⇒": Each residue class in $[0 \ldots m - 1]$ occurs exactly once during a full period. Hence we may assume $x_0 = 0$. Then

$$x_n = (1 + a + \cdots + a^{n-1}) \cdot b \mod m \quad \text{for all } n.$$

Since x_n assumes the value 1 for some n we conclude that b is invertible mod m, or that b and m are coprime.

Let $p \mid m$. From $x_m = 0$ we now get $m \mid 1 + a + \cdots + a^{m-1}$, hence

$$p \mid m \mid a^m - 1 = (a - 1)(1 + a + \cdots + a^{m-1}).$$

Fermat’s little theorem gives $a^p \equiv a \pmod{p}$, hence

$$a^m = a^{p^e} \equiv a^{p^e-1} \equiv \ldots \equiv a \pmod{p},$$

hence $p
\mid a - 1$. This proves (ii).

Statement (iii) corresponds to the case $p = 2$ with $e \geq 2$. From (ii) we get that a is even. The assumption $a \equiv 3 \pmod{4}$ would result in the contradiction $x_{m/2} = 0$ by Lemma 2. Hence $a \equiv 1 \pmod{4}$.

"⇐": Again we may assume $x_0 = 0$. Then

$$x_n = 0 \iff m \mid 1 + a + \cdots + a^{n-1}.$$

In particular the case $a = 1$ is trivial. Hence assume $a \geq 2$. Then

$$x_n = 0 \iff m \mid \frac{a^n - 1}{a - 1}. $$

We have to show:

- $m \mid \frac{a^{m-1}}{a-1}$—then $\lambda \mid m$;
- m doesn’t divide $\frac{a^{m/p-1}}{a-1}$—then $\lambda \geq m$ since m is a power of p.

Let p^h be the maximum power that divides $a - 1$. By Lemma 3 we conclude

$$a^p \equiv 1 \pmod{p^{h+1}}, \quad a^p \not\equiv 1 \pmod{p^{h+2}}$$

and successively

$$a^{p^k} \equiv 1 \pmod{p^{h+k}}, \quad a^{p^k} \not\equiv 1 \pmod{p^{h+k+1}}.$$
for all k. In particular $p^{k+e} \mid a^m - 1$. Since no larger power than p^h divides $a - 1$ we conclude that $m = p^e \mid \frac{a^m - 1}{a - 1}$. The assumption $p^e \mid \frac{a^{m/p^e} - 1}{a - 1}$ leads to the contradiction $p^{e+h} \mid a^{p^e - 1} - 1$. ♦

The main application of Proposition 1 is for modules that are powers of 2:

Corollary 1 (Greenberger 1961) For the module $m = 2^e$ with $e \geq 2$ the period m is attained if and only if:

(i) b is odd.

(ii) $a \equiv 1 \pmod{4}$.

For prime modules Proposition 1 is useless, as the following corollary shows.

Corollary 2 For a prime module m the period m is attained if and only if b is coprime with m and $a = 1$.

This (lousy) result admits an immediate generalization to squarefree modules m:

Corollary 3 For a squarefree module m the period m is attained if and only if b is coprime with m and $a = 1$.

In summary Proposition 1 shows how to get the maximum possible period, and Corollary 1 provides a class of half-decent useful examples.