
K. Pommerening, Bitstream Ciphers 51

2.6 A General Prediction Method

The method of Boyar (née Plumstead) admits a broad generalization
by the BK algorithm (named after Boyar and Krawczyk): It applies
to recursive formulas that have an expression in terms of (unknown) linear
combinations of known functions. A suitable language for its description is
commutative algebra, that is, rings and modules.

So let R be a commutative ring (with 1 6= 0), and X, Z be R-modules.
Let

�(i) : Xi �! Z for i � h

be a family of maps that we consider as known, and

↵ : Z �! X

be a linear map considered as secret. From these data we generate a sequence
(xn)n2N in X by the following algorithm, see Figure 2.2:

• Set x0, . . . , xh�1 2 X as initial values.

• After generating x0, . . . , xn�1 for some n � h let

zn := �(n)(x0, . . . , xn�1) 2 Z,

xn := ↵(zn) 2 X.

x0 x1 xn�1 xn

zn��
�⌧
�(n)

6

-

6 6 6

?

↵

-output
sequence

Figure 2.2: A very general generator

Here, in greater generality as before, we allow that each element of the
sequence depends on all of its predecessors, that is, on the complete “past”.
A reasonable use for pseudorandom generation of course supposes that the
�(i) are e�ciently computable. In the sample case R = Z/mZ, X = Rk, the
cost should grow at most polynomially with log(m), h, and k.

Examples

1. The linear congruential generator: R = Z/mZ = X, Z = R2, h = 1,
xn = axn�1 + b,

�(i)(x0, . . . , xi�1) =

✓
xi�1

1

◆
,

K. Pommerening, Bitstream Ciphers 52

↵

✓
s
t

◆
= as+ bt.

2. The linear-inversive congruential generator: R, X, Z, h, ↵ as above,
xn = ax�1

n�1 + b,

�(i)(x0, . . . , xi�1) =

✓
x�1
i�1 mod m

1

◆
.

(Set the first component to 0 if xi�1 is not invertible modm.)

3. Congruential generators of higher degree: R = Z/mZ = X, Z = Rd+1,
h = 1, xn = adxdn�1 + · · ·+ a0,

�(i)(x0, . . . , xi�1) =

0

BBB@

xdi�1
...

xi�1

1

1

CCCA
,

↵

0

B@
t0
...
td

1

CA = adt0 + · · ·+ a0td.

4. Arbitrary congruential generators: R = Z/mZ, xn = s(xn�1), h = 1.
If m is prime, then each function s: R �! R has an expression as a
polynomial of degree < m, as in Example 3. For a more general module
m we may use the basis {e0, . . . , em�1} with ei(j) = �ij of RR. The
basis representation is s =

Pm�1
i=0 s(i)ei. Thus we set X = R, Z = Rm,

and

�(i)(x0, . . . , xi�1) =

0

B@
e0(xi�1)

...
em�1(xi�1)

1

CA ,

↵

0

B@
t0
...

tm�1

1

CA = s(0)t0 + · · ·+ s(m� 1)tm�1.

5. For multistep congruential generators set h equal the recursion depth.

6. For nonlinear feedback shift registers see the next section 2.7.

For cryptanalysis we assume that the �(i) are known, but ↵ is unknown.
(Later on, in the case R = Z/mZ, we’ll also treat m as unknown.) The
question is: Given an initial segment x0, . . . , xn�1 (n � h) of the output
sequence, is there a method to predict the next element xn?

K. Pommerening, Bitstream Ciphers 53

To this end we consider the ascending chain Zh ✓ Zh+1 ✓ . . . ✓ Z of
submodules with

Zn = Rzh + · · ·+Rzn.

If Zn = Zn�1, then zn = thzh + · · · + tn�1zn�1 with th, . . . , tn�1 2 R, and
applying ↵ we get the formula

xn = thxh + · · ·+ tn�1xn�1

that predicts xn from x0, . . . , xn�1 without using knowledge of ↵.
If Z is a Noetherian R-module, then we encounter a stationary situation

after finitely many steps: Zn = Zl for n � l. Beginning with this index the
complete sequence xn is predictable by the following “algorithm”:

1. Calculate zn = �(n)(x0, . . . , xn�1).

2. Find a linear combination zn = thzh + · · ·+ tn�1zn�1.

3. Set xn = thxh + · · ·+ tn�1xn�1.

The Noetherian principle allows the prediction by a linear
relation (that however might change from step to step).

To transform the “algorithm” into a true algorithm we need a procedure
that explicitly finds a linear combination in step 2, solving a system of linear
equations in Z.

For our standard example of a congruential generator with module
m = 8397 (here assumed to be known), x0 = 2134, x1 = 2160, x2 = 6905,
we calculate

z1 =

✓
2134
1

◆
, z2 =

✓
2160
1

◆
, z3 =

✓
6905
1

◆
.

Trying to write z3 as a linear combination t1z1 + t2z2 we get the system

2134t1 + 2160t2 = 6905(1)

t1 + t2 = 1

of linear equations in R = Z/mZ. By elimination we find

26t1 = �4745 = 3652.

The inverse of 26 mod 8397 is 323, and thus we get t1 = 4016, t2 = 4382.
This result correctly predicts x3 = 3778.

Proceeding in this way we correctly predict the complete output se-
quence. The reason is that Z2 = Z:

z2 � z1 =

✓
26

0

◆
, e1 =

✓
1

0

◆
2 Z2, e2 =

✓
0

1

◆
= z1 � 2134 · e1 2 Z2.

K. Pommerening, Bitstream Ciphers 54

This example contains a partial answer to the question of when the chain
of submodules Zn becomes stationary: At least when Zl = Z. But in a more
general case this might never happen. Note also that from Zl = Zl+1 we
can’t conclude that the chain is stationary at Zl—later on it could ascend
again. For a bound on the number of proper increments see Proposition 5.

In each single loop of the prediction algorithm there are two possible
alternative events:

• zn 62 Zn�1. Then predicting xn is impossible, and Zn�1 properly ex-
tends to Zn = Zn�1 +Rzn.

• zn 2 Zn�1. Then the algorithm correctly predicts xn.

By Proposition 5 the first of these two events may happen at most log2(#Z)
times (or DimZ times if R is a field). For each of these events we need ac-
cess to the next element xn of the output sequence to get ahead. On first
sight this looks disappointing, but some thought brings to mind that it is a
realistic situtation for cryptanalysis: In the process of breaking a cipher the
cryptanalyst works with a supposed key until she gets nonsense “plaintext”.
Then she tries to guess the following plaintext characters by context knowl-
edge, corrects the supposed key and goes on with deciphering. Remember
that we already encountered this e↵ect in the last section. And note that the
present algorithm is fairly simple but contents itself with predicting elements
instead of determining the unknown parameters of the random generator.

