
K. Pommerening, Bitstream Ciphers 40

2.3 Cracking an LFSR Stream XOR Encryption

Let us break down the abstract setting of Section 2.2 to an explicit procedure
for cracking an XOR cipher that uses an LFSR sequence as keystream. (This
section doesn’t depend on 2.1 or 2.2 but contains a direct approach.)

Consider a key bitstream u0, u1, . . . generated by an LFSR by the formula
un = s1un�1+· · ·+slun�l. Assume a plaintext a is XOR encrypted using this
key stream, resulting in the ciphertext c, where ci = ai + ui for i = 0, 1, . . .
What are the prospects of an attacker who knows a chunk of the plaintext?

Well, assume she knows the first l+1 bits a0, . . . , al of the plaintext. She
immediately derives the corresponding bits u0, . . . , ul of the key stream, in
particular the initial state of the LFSR. For the yet unknown coe�cients si
she knows a linear relation:

s1ul�1 + · · ·+ slu0 = ul.

Each additional known plaintext bit yields one more relation, and having l
relations, from 2l bits of known plaintext, the easy linear algebra over the
field F2 finds a unique solution (in non-degenerate cases).

So assume we know the first 2l bits u0, . . . , u2l�1 from an LFSR of length
l. The state vector

u(i) = (ui, . . . , ui+l�1) for i = 0, 1, . . .

is the register content for step i (in reversed order compared with Figure 1.7).
Thus the analysis focusses on the states, not directly on the output. The
recursion in matrix form (for n � l) is

0

BBB@

un�l+1
...

un�1

un

1

CCCA
=

0

BBB@

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
sl sl�1 . . . s1

1

CCCA

0

BBB@

un�l
...

un�2

un�1

1

CCCA

or more parsimoniously (the indices being substituted by m = n� l + 1)

u(m) = S · u(m�1) for m � 1

where S is the companion matrix. As a further step we collect l consecutive
state vectors u(i), . . . , u(i+l�1) in a state matrix

U(i) =

0

BBB@

ui ui+1 . . . ui+l�1

ui+1 ui+2 . . . ui+l
...

...
. . .

...
ui+l�1 ui+l . . . u2l�2

1

CCCA



K. Pommerening, Bitstream Ciphers 41

and set U = U(0), V = U(1). This yields the formula

V = S · U

that expresses the unknown coe�cients s1, . . . , sl by the known plaintext
bits u0, . . . , u2l�1. Most notably it allows us to write down the solution
immediately—provided that the matrix U is invertible:

S = V · U�1.

The matrix S explicitly displays the coe�cients s1, . . . , sl. We’ll discuss the
invertibility later on.

Example

Assume we are given a ciphertext:

10011100 10100100 01010110 10100110 01011101 10101110

01100101 10000000 00111011 10000010 11011001 11010111

00110010 11111110 01010011 10000010 10101100 00010010

11000110 01010101 00001011 11010011 01111011 10110000

10011111 00100100 00001111 01010011 11111101

We suspect that the cipher is XOR with a key stream from an LFSR of
length l = 16. The context suggest that the text is in German and begins
with the word “Tre↵punkt” (meeting point). To solve the cryptogram we
need 32 bits of plaintext, that is the first four letters only, presupposed that
the theory applies. This gives 32 bits of the key stream:

01010100 01110010 01100101 01100110 = T r e f

10011100 10100100 01010110 10100110 cipher bits

-------- -------- -------- --------

11001000 11010110 00110011 11000000 key bits

Sage sample 2.1 determines the coe�cient matrix. Its last row tells us that
all si = 0 except s16 = s5 = s3 = s2 = 1.

Now we know the LFSR and the initial state, and can reconstruct the
complete key stream—yes, it is the same as in Section 1.10—and write down
the plaintext (that by the way begins a bit di↵erently from our guess).

We have shown that the co�cients are uniquely determined assuming
the state matrix U = U(0) is invertible. As a consequence in this case the
LFSR is completely known, and all output bits are predictable. We have yet
to discuss the case where the matrix U is singular.

If one of the first l state vectors (= rows of the matrix U) is zero, then
all following state vectors are zero too, and prediction is trivial.

Thus we may assume that none of these vectors are zero, but that they
are linearly dependent (reinventing the Noetherian principle for this special



K. Pommerening, Bitstream Ciphers 42

Sage Example 2.1 Determining a coe�cient matrix

sage: l = 16

sage: kbits =

[1,1,0,0,1,0,0,0,1,1,0,1,0,1,1,0,0,0,1,1,0,0,1,1,1,1,0,0,0,0,0,0]

sage: ulist = []

sage: for i in range(0,l):

state = kbits[i:(l+i)]

ulist.append(state)

sage: U = matrix(GF(2),ulist)

sage: det(U)

1

sage: W = U.inverse()

sage: vlist = []

sage: for i in range(1,l+1):

state = kbits[i:(l+i)]

vlist.append(state)

sage: V = matrix(GF(2),vlist)

sage: S = V*W

sage: S

[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]

[1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0]

scenario). Then there is a smallest index k � 1 such that u(k) is contained in
the subspace spanned by u(0), . . . , u(k�1), and we find coe�cients t1, . . . , tk 2
F2 such that

u(k) = t1u(k�1) + · · ·+ tku(0).

Then also u(k+1) = S ·u(k) = t1S ·u(k�1)+· · ·+tkS ·u(0) = t1u(k)+· · ·+tku(1),



K. Pommerening, Bitstream Ciphers 43

and by induction we get

u(n) = t1u(n�1) + · · ·+ tku(n�k) for all n � k.

This formula predicts all the following bits.

Discussion

• For a singular state matrix this consideration yields a shorter LFSR
(of length k < l) that generates exactly the same sequence. Then our
method doesn’t determine the coe�cients of the original register but
nevertheless correctly predicts the sequence.

• If the bits the attacker knows aren’t just the first ones but 2l contiguous
ones at a later position, then the theorem yields only the prediction
of the following bits. In the main case of an invertible state matrix U
the LFSR is completely known and may be run backwards to get the
previous bits. For a singular state matrix we achieve the same e↵ect
using the shorter LFSR constructed above.

• The situation where 2l bits of the key stream are known but at non-
contiguous positions is slightly more involved. We get linear relations
that contain additional (unknown) intermediate bits. If m is the num-
ber of these then we get l + m linear equations for l + m unknown
bits.

• What if the length l of the LFSR is unknown? Exhaustively trying
all values l = 1, 2, 3, . . . is nasty but feasible. A better approach is
provided by the Berlekamp-Massey algorithm, see Section 3.3 that
is e�cient also without knowledge of l.


