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2.7 Nonlinear Feedback Shift Registers

As another example of the general prediction method we consider arbitrary,
not necessarily linear, feedback shift registers as illustrated in Figure 2.3.
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Figure 2.3: A feedback shift register (FSR) of length l

Here the feedback function is an arbitrary Boolean function f: Fl
2 �! F2

whose algebraic normal form is a polynomial

f(y1, . . . , yl) =
X

I✓{1,...,l}

aIy
I with yI =

Y

j2I
yj .

We want to apply the prediction method with R = X = F2, h = l,
Z = F2l

2 . For i � l
�(i) : Fi

2 �! Z

is given by

zi := �(i)(x1, . . . , xi) = (yI)I✓{1,...,l} with y = (xi�l+1, . . . , xi).

And finally we set

↵ : Z �! X, ↵((tI)I✓{1,...,l}) =
X

aItI .

First we treat two concrete examples:

Examples

1. l = 2, f = T1T2 + T2. From the initial values u0 = 1, u1 = 0 we
generate the sequence (manually or by Sage example 2.2)

u0 = 1, u1 = 0, u2 = 1, u3 = 0, . . .

(that evidently has period 2). We have
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From this the cryptanalyst recognizes the linear recursion

zn = zn�2 = 0 · zn�1 + 1 · zn�2 for n � 4.

She even recognizes the period, and correctly predicts

un = 0 · un�1 + 1 · un�2 = un�2 for n � 4.

Note that the very same sequence can be generated by a linear FSR
of length 2. The analysis used the elements u0, u1, u2, u3.

2. l = 3, f = T1T3 + T2. From the initial values u0 = 0, u1 = 1, u2 = 1
we generate the elements (manually or by Sage example 2.3)

u3 = 1, u4 = 0, u5 = 1, u6 = 1, u7 = 1, u8 = 0, u9 = 1, . . .

of the output sequence. We have
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and so on. Hence the supposed linear recursion is

zn = zn�4 for n � 4,

again it reflects the periodicity. We get the correct prediction formula

un = un�4 for n � 4.

We needed the elements from u0 to u6; and again we found an “equiv-
alent” LFSR, this time of length 4.
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Sage Example 2.2 f1 = T1T2+T2—monomials with exponent pairs [1,1]
=̂ 3 and [0,1] =̂ 1, hence ANF bitblock [0,1,0,1]

f1 = BoolF([0,1,0,1],method="ANF")

y = f1.getTT(); y

[0, 1, 0, 0]

start = [0,1]

seq = fsr(f1,start,10); seq

[1, 0, 1, 0, 1, 0, 1, 0, 1, 0]

Sage Example 2.3 f2 = T1T3 + T2—monomials with exponent triples
[1,0,1] =̂ 5 and [0,1,0] =̂ 2, hence ANF bitblock [0,0,1,0,0,1,0,0]

f2 = BoolF([0,0,1,0,0,1,0,0],method="ANF")

y = f2.getTT(); y

[0, 1, 0, 0]

start = [1,1,0]

seq = fsr(f2,start,10); seq

[0, 1, 1, 1, 0, 1, 1, 1, 0, 1]

Since the dimension of Z grows exponentially with the register length the
prediction algorithm reaches its limits soon. In the worst case the stationary
state of the ascending chain of subspaces—and the needed linear relation—
occurs only after 2l steps. This observation would make shift registers up to
a length of about 32 predictable with manageable cost using linear algebra
in a binary vector space of dimension 232.

However in the examples we observed that the linear relation we found
is nothing other than the formula for the final periodic repetition. This was
not a fortunate coincidence but is a general phenomen that has an easy
proof. For details see the paper [6]. Hence instead of solving large systems
of linear equations we can apply an algorithm for period search that needs
significantly less resources. This approach enables a realistic attack on shift
registers of lengths up to about 80.

From a general point of view there is another objection against using
arbitrary FSRs: The feedback function f depends on 2l parameters. To have
f e�ciently computable and to deal with a manageable key space we have to
restrict the choice of f , say by forcing “almost all” coe�cients aI in the ANF
of the “admissible” feedback functions f to 0. Thus we specify a “small” set
M ✓ P({1, . . . l}) a priori, and use only functions f whose ANF

f(x1, . . . , xl) =
X

I2P({1,...l})

aIx
I
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has coe�cients aI = 0 for I 62 M. Then the key space has size 2#M.
However the coice of M is part of the encryption algorithm—in particular
for a hardware FSR—, not a part of the key. Kerckhoffs’ principle warns
us that the enemy will learn about M sooner or later. In the model of
Figure 2.1 we treat the a priori “monomial supply” M as public parameter,
and the concrete “monomial selection” I as secret parameter.

The necessity of choosing an e�ciently computable feedback function
and a manageable key space enforces restrictions that make the prediction
method e�cient too. Expressed in a somewhat sloppy way:

Proposition 9 Each bit sequence that is generated by an FSR with e�-
ciently computable feedback function is e�ciently predictable.

Our treatment of this problem was quite coarse. To derive mathemati-
cally correct statements there are two approaches:

1. Directly estimate the circuit complexity of the prediction algorithm by
the circuit complexity of the feedback function.

2. Consider families of Boolean functions—that define families of FSRs—
whose complexity grows polynomially with the register length, and
show that the costs of the corresponding prediction procedures also
grow at most polynomially.

For a comprehensive treatment see the cited paper [6].
We conclude that FSRs, no matter whether linear or nonlinear, are un-

suited for generating pseudorandom sequences of cryptographic value—at
least if naively applied. The method of Boyar/Krawczyk breaks also
nonlinear FSRs in realistic scenarios. And the result of Beth/Dai in Sec-
tion 3.6 will open another promising way of predicting an FSR using the
Berlekamp/Massey algorithm, see Section 3.3.


