3.3 The Berlekamp-Massey Algorithm

The proof of Proposition 10 is constructive: It contains an algorithm that successively builds a linear generator. For the step from length \(n \) to length \(n + 1 \) three cases (1, 2a, 2b) are possible:

Case 1 \(d_n = 0 \), hence the generator with feedback polynomial \(\varphi \) next outputs \(u_n \): Then \(\varphi \) and \(l \) remain unchanged, and so remain \(\psi, t, r, d_r \).

Case 2 \(d_n \neq 0 \), hence the generator with feedback polynomial \(\varphi \) doesn’t output \(u_n \) as next element: Then we form a new feedback polynomial \(\eta \) whose corresponding generator outputs \((u_0, \ldots, u_n) \). We distinguish between:

a) \(l > \frac{n}{2} \): Then \(\lambda_{n+1} = \lambda_n \). We replace \(\varphi \) by \(\eta \) and leave \(l, \psi, t, r, d_r \) unchanged.

b) \(l \leq \frac{n}{2} \): Then \(\lambda_{n+1} = n + 1 - \lambda_n \). We replace \(\varphi \) by \(\eta \), \(l \) by \(n + 1 - l \), \(\psi \) by \(\varphi \), \(t \) by \(l \), \(r \) by \(n \), \(d_r \) by \(d_n \).

So a semi-formal description of the Berlekamp-Massey algorithm is:

Input: A sequence \(u = (u_0, \ldots, u_{N-1}) \in \mathbb{K}^N \).

Output: The linear complexity \(\lambda_N(u) \), the feedback polynomial \(\varphi \) of a linear generator of length \(\lambda_N(u) \) that produces \(u \).

Auxiliary variables: \(n \) = current index, initialized by \(n := 0 \),

\(l \) = current linear complexity, initialized by \(l := 0 \),

\(\varphi \) = current feedback polynomial = \(1 - a_1 T - \cdots - a_l T^l \), initialized by \(\varphi := 1 \),

invariant condition: \(u_i = a_1 u_{i-1} + \cdots + a_l u_{i-l} \) for \(l \leq i < n \),

\(d \) = current discrepancy = \(u_n - a_1 u_{n-1} - \cdots - a_l u_{n-l} \),

\(r \) = previous index, initialized by \(r := -1 \),

\(t \) = previous linear complexity,

\(\psi \) = previous feedback polynomial = \(1 - b_1 T - \cdots - b_t T^t \), initialized by \(\psi := 1 \),

invariant condition: \(u_i = b_1 u_{i-1} + \cdots + b_t u_{i-t} \) for \(t \leq i < r \),

\(d' \) = previous discrepancy = \(u_r - b_1 u_{r-1} - \cdots - b_t u_{r-t} \), initialized by \(d' := 1 \),

\(\eta \) = new feedback polynomial,

\(m \) = new linear complexity.
Iteration steps: For \(n = 0, \ldots, N - 1 \):

\[
d := u_n - a_1 u_{n-1} - \cdots - a_l u_{n-l}
\]

If \(d \neq 0 \)

\[
\eta := \varphi - \frac{d}{\tilde{f}} \cdot T^n - r \cdot \psi
\]

If \(l \leq \frac{n}{2} \) [linear complexity increases]

\[
m := n + 1 - l
\]
\[
t := l
\]
\[
l := m
\]
\[
\psi := \varphi
\]
\[
r := n
\]
\[
d' := d
\]

\[
\varphi := \eta
\]

Output: \(\lambda_N(u) := l \) and \(\varphi \)

Of course we may output also the complete sequence \(\langle \lambda_n \rangle \).

As an example we apply the algorithm to the sequence 001101110. The steps where \(d \neq 0, l \leq \frac{n}{2} \), are tagged by "[*]".

<table>
<thead>
<tr>
<th>preconditions of the step</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 0) (u_0 = 0) (t = 0) (\varphi = 1)</td>
<td>(d := u_0 = 0)</td>
</tr>
<tr>
<td>(r = -1) (d' = 1)</td>
<td>(\psi = 1)</td>
</tr>
<tr>
<td>(n = 1) (u_1 = 0) (t = 0) (\varphi = 1)</td>
<td>(d := u_1 = 0)</td>
</tr>
<tr>
<td>(r = -1) (d' = 1)</td>
<td>(\psi = 1)</td>
</tr>
</tbody>
</table>
| \(n = 2 \) \(u_2 = 1 \) \(t = 0 \) \(\varphi = 1 \) | \(d := u_2 = 1 \) [!]
| \(r = -1 \) \(d' = 1 \) | \(\psi = 1 \) |
| \(n = 3 \) \(u_3 = 1 \) \(l = 3 \) \(\varphi = 1 - T^3 \) | \(d := u_3 - u_0 = 1 \) |
| \(r = 2 \) \(d' = 1 \) | \(\psi = 1 \) |
| \(n = 4 \) \(u_4 = 0 \) \(l = 3 \) \(\varphi = 1 - T - T^3 \) | \(d := u_4 - u_3 - u_1 = -1 \) |
| \(r = 2 \) \(d' = 1 \) | \(\psi = 1 \) |
| \(n = 5 \) \(u_5 = 1 \) \(l = 3 \) \(\varphi = 1 - T + T^2 - T^3 \) | \(d := u_5 - u_4 + u_3 - u_2 = 1 \) |
| \(r = 2 \) \(d' = 1 \) | \(\psi = 1 \) |

From now on the results differ depending on the characteristic of the base field \(K \). First assume char \(K \neq 2 \). Then the procedure continues as follows:
The generating formula is

\[K. \text{Pommerening, Bitstream Ciphers} \]

<table>
<thead>
<tr>
<th>preconditions of the step</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 6) (u_6 = 1) (l = 3) (\varphi = 1 - T + T^2 - 2T^3) (r = 2) (d' = 1) (t = 0) (\psi = 1)</td>
<td>(d := u_6 - u_5 + u_4 - 2u_3 = -2) (|) (\eta = 1 - T + T^2 - 2T^3 + 2T^4) (m := 4)</td>
</tr>
<tr>
<td>(n = 7) (u_7 = 1) (l = 4) (\varphi = 1 - T + T^2 - 2T^3 + 2T^4) (r = 6) (d' = -2) (t = 3) (\psi = 1 - T + T^2 - 2T^3)</td>
<td>(d := u_7 - u_6 + u_5 - 2u_4 + 2u_3 = 3) (\eta = 1 + \frac{1}{2}T - \frac{1}{2}T^2 - \frac{1}{2}T^3 - T^4) (m := 4)</td>
</tr>
<tr>
<td>(n = 8) (u_8 = 0) (l = 4) (\varphi = 1 + \frac{1}{2}T - \frac{1}{2}T^2 - \frac{1}{4}T^3 - T^4) (r = 6) (d' = -2) (t = 3) (\psi = 1 - T + T^2 - 2T^3)</td>
<td>(d := u_8 + \frac{3}{2}u_7 - \frac{3}{4}u_6 - \frac{1}{2}u_5 - u_4 = -\frac{5}{2}) (|) (\eta = 1 + \frac{1}{2}T - \frac{3}{4}T^2 - \frac{1}{4}T^3 - \frac{5}{4}T^4 + \frac{1}{2}T^5) (m := 5)</td>
</tr>
</tbody>
</table>

The resulting sequence of linear complexities is

\[\lambda_0 = 0, \lambda_1 = 0, \lambda_2 = 0, \lambda_3 = 3, \lambda_4 = 3, \lambda_5 = 3, \lambda_6 = 3, \lambda_7 = 4, \lambda_8 = 4, \lambda_9 = 5, \]

and the generating formula is

\[\bar{u}_i = \frac{1}{2}u_{i-1} + \frac{3}{4}u_{i-2} + \frac{1}{4}u_{i-3} + \frac{5}{4}u_{i-4} - \frac{1}{2}u_{i-5} \text{ for } i = 5, \ldots, 8. \]

For char \(K = 2 \) the last three iteration steps look differently:

<table>
<thead>
<tr>
<th>preconditions of the step</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 6) (u_6 = 1) (l = 3) (\varphi = 1 - T - T^2) (r = 2) (d' = 1) (t = 0) (\psi = 1)</td>
<td>(d := u_6 - u_5 - u_4 = 0)</td>
</tr>
<tr>
<td>(n = 7) (u_7 = 1) (l = 3) (\varphi = 1 - T - T^2) (r = 2) (d' = 1) (t = 0) (\psi = 1)</td>
<td>(d := u_7 - u_6 - u_5 = 1) (|) (\eta = 1 - T - T^2 - T^5) (m := 5)</td>
</tr>
<tr>
<td>(n = 8) (u_8 = 0) (l = 5) (\varphi = 1 - T - T^2 - T^5) (r = 7) (d' = 1) (t = 3) (\psi = 1 - T - T^2)</td>
<td>(d := u_8 - u_7 - u_6 - u_5 = 1) (|) (\eta = 1 - T^3 - T^5)</td>
</tr>
</tbody>
</table>

In this case the sequence of linear complexities is

\[\lambda_0 = 0, \lambda_1 = 0, \lambda_2 = 0, \lambda_3 = 3, \lambda_4 = 3, \lambda_5 = 3, \lambda_6 = 3, \lambda_7 = 3, \lambda_8 = 5, \lambda_9 = 5, \]

and the generating formula is

\[\bar{u}_i = u_{i-3} + u_{i-5} \text{ for } i = 5, \ldots, 8. \]

Figure 3.2 shows the growth of the linear complexities.

The cost of the BERLEKAMP-MASSEY algorithm is \(O(N^3 \log N) \).

The sequence \((\lambda_n)_{n \in \mathbb{N}}\) or (for finite output sequences) \((\lambda_n)_{0 \leq n \leq N}\) is called the linearity profile of the sequence \(u \).
Here is the linearity profile of the first 128 bits of the sequence that we generated by an LFSR in Section 1.10:

\[(0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 7, 7, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12, 17, 17, 17, 17, 17, 18, 18, 18, 18, 20, 20, 20, 21, 21, 22, 22, 22, 24, 24, 24, 24, 24, 28, 28, 28, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 32, 34, 34, 34, 36, 36, 36, 36, 37, 38, 38, 39, 39, 40, 40, 41, 41, 41, 41, 41, 46, 46, 46, 46, 46, 46, 47, 47, 48, 48, 49, 49, 50, 50, 50, 52, 52, 52, 52, 53, 54, 54, 54, 55, 54, 54, 54, 54, 61, 61, 61, 61, 61, 61, 61, 61, 61),
\]

its graphic representation is in Figure 3.3:

In Section ?? we’ll generate a “perfect” pseudo-random sequence. The linearity profile of its first 128 bits is:

\[(0, 1, 1, 1, 1, 4, 4, 4, 4, 4, 5, 5, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 12, 12, 12, 12, 12, 12, 12, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 20, 20, 20, 21, 21, 22, 22, 22, 24, 24, 24, 24, 24, 24, 28, 28, 28, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 34, 34, 34, 34, 36, 36, 36, 36, 37, 38, 38, 39, 39, 40, 40, 41, 41, 41, 41, 41, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 48, 48, 49, 49, 50, 50, 50, 52, 52, 52, 52, 53, 54, 54, 54, 54, 54, 54, 54, 54, 61, 61, 61, 61, 61, 61, 61),
\]

graphically illustrated by Figure 3.4.

In the second example we see a somewhat irregular oscillation around the diagonal, as should be expected for a “good” random sequence. The first example also shows a similar behaviour, but only until the linear complexity of the sequence is reached.
Figure 3.3: Linearity profile of an LFSR sequence

Figure 3.4: Linearity profile of a perfect pseudo-random sequence