
K. Pommerening, Bitstream Ciphers 81

3.4 The BM Algorithm as a Cryptanalytic Tool

We revisit the cryptanalysis of an XOR ciphertext in Section 2.3 and explore
how well the BM algorithm performs in this example following the cycle
“construct – predict – adjust” as in Section 2.10. Remember the ciphertext:

10011100 10100100 01010110 10100110 01011101 10101110

01100101 10000000 00111011 10000010 11011001 11010111

00110010 11111110 01010011 10000010 10101100 00010010

11000110 01010101 00001011 11010011 01111011 10110000

10011111 00100100 00001111 01010011 11111101

For use with SageMath we provisionally fix its first 48 bits:

ciphtext = [1,0,0,1,1,1,0,0,1,0,1,0,0,1,0,0,0,1,0,1,0,

1,1,0,1,0,1,0,0,1,1,0,0,1,0,1,1,1,0,1,1,0,1,0,1,1,1,0]

As in Section 2.3 we suspect that the cipher is XOR with a key stream from
an LFSR, but now of unknown length. As before we guess that the text
is in German and might begin with the word “Tre↵punkt”. To solve the
cryptogram we need some bits of plaintext, say the first t letters (assumed
in the 8-bit ISO 8859-1 character set), making up 8t bits of the key stream.

Let us tentatively start with two letters of plaintext: Tr, and the corre-
sponding 16 keystream bits

10011100 10100100 (ciphertext)

Tr = 01010100 01110010 (assumed plaintext)

-------- --------

11001000 11010110 (keystream)

After attaching the Sage modules Bitblock.sage, FSR.sage, and
bmAlg.sage from Appendix C (or Part II, Appendix E.1) we use the in-
teractive commands

sage: kbits = [1,1,0,0,1,0,0,0,1,1,0,1,0,1,1,0]

sage: res = bmAlg(kbits)

sage: fbpol = res[1]; fbpol

T^8 + T^7 + T^5 + T^4 + T^3 + T^2 + T + 1

This result tells us that the shortest LFSR that generates our 16 keystream
bits has length 8 and the taps 1, 2, 3, 4, 5, 7, 8 set. Next we initialize this
LFSR in SageMath (note the reverse order of the bits in the initial state):

sage: coeff = [1,1,1,1,1,0,1,1]

sage: reg = LFSR(coeff)

sage: start = [0,0,0,1,0,0,1,1]

sage: reg.setState(start)



K. Pommerening, Bitstream Ciphers 82

Using this LFSR we predict 32 more, hence altogether 48 tentative keystream
bits:

sage: testkey = reg.nextBits(48); testkey

[1,1,0,0,1,0,0,0,1,1,0,1,0,1,1,0,1,0,0,1,1,1,0,0,

0,0,0,0,0,1,1,0,0,0,0,1,0,1,1,1,0,1,1,1,1,0,0,0]

These tentative key bits yield 48 bits of experimental plaintext, represented
by 6 bytes in decimal notation:

sage: testplain = xor(ciphtext,testkey)

sage: testtext = []

sage: for i in range(6):

block = testplain[8*i:8*i+8]

nr = bbl2int(block)

testtext.append(nr)

sage: testtext

[84, 114, 202, 160, 74, 214]

or, written as ISO 8859-1 characters, “TrE̊tJÖ” (where t represents the
non-breaking space)—a definitive failure.

So let us guess one more letter of plaintext: Tre, and use the correspond-
ing 24 keystream bits

10011100 10100100 01010110 (ciphertext)

Tre = 01010100 01110010 01100101 (assumed plaintext)

-------- -------- --------

11001000 11010110 00110011 (keystream)

As above we apply the BM algorithm interactively and get an LFSR of length
12 with feedback polynomial T 12+T 10+T 9+T 8+T 6+T 5+T 3+T+1, hence
taps 1, 3, 5, 6, 8, 9, 10, 12. Setting up the LFSR and predicting 48 keystream
bits:

sage: coeff = [1,0,1,0,1,1,0,1,1,1,0,1]

sage: reg = LFSR(coeff)

sage: start = [1,0,1,1,0,0,0,1,0,0,1,1]

sage: reg.setState(start)

sage: testkey = reg.nextBits(48); testkey

[1,1,0,0,1,0,0,0,1,1,0,1,0,1,1,0,0,0,1,1,0,0,1,1,

0,1,0,1,0,0,0,0,1,0,0,0,1,0,1,1,0,1,0,1,0,0,0,1]

we again get 48 bits of experimental plaintext, as bytes in decimal notation:
[84, 114, 101, 246, 214, 255]. The translation to ISO 8859-1 yields the
next flop: “TreöÖÿ”.

As next step we use four letters of known plaintext Tref (as in Sec-
tion 2.3) and derive 32 tentative keystream bits:



K. Pommerening, Bitstream Ciphers 83

10011100 10100100 01010110 10100110 (ciphertext)

Tref = 01010100 01110010 01100101 01100110 (assumed plaintext)

-------- -------- -------- --------

11001000 11010110 00110011 11000000 (keystream)

The BM algorithm yields an LFSR of length 16 with feedback polynomial
T 16 + T 5 + T 3 + T 2 +1, hence taps 2, 3, 5, 16. It predicts 48 keystream bits:

sage: coeff = [0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,1]

sage: reg = LFSR(coeff)

sage: start = [0,1,1,0,1,0,1,1,0,0,0,1,0,0,1,1]

sage: reg.setState(start)

sage: testkey = reg.nextBits(48); testkey

[1,1,0,0,1,0,0,0,1,1,0,1,0,1,1,0,0,0,1,1,0,0,1,1,

1,1,0,0,0,0,0,0,0,0,1,1,1,0,1,1,1,0,0,0,1,1,1,0]

and the experimental plaintext [84, 114, 101, 102, 102, 32] that looks
promising: “Tre↵t” (where t here represents simple space character).

Sure of victory we decipher the complete text:

sage: cstream = "10011100101...1111111101"

sage: fullcipher = str2bbl(cstream)

sage: start = [0,1,1,0,1,0,1,1,0,0,0,1,0,0,1,1]

sage: reg.setState(start)

sage: keystream = reg.nextBits(232)

sage: fullplain = xor(fullcipher,keystream)

sage: fulltext = []

sage: for i in range(232/8):

block = fullplain[8*i:8*i+8]

nr = bbl2int(block)

fulltext.append(nr)

sage: fulltext

[84,114,101,102,102,32,109,111,114,103,101,110,32,56,32,85,104,114,

32,66,97,104,110,104,111,102,32,77,90]

T r e f f _ m o r g e n _ 8 _ U h r

_ B a h n h o f _ M Z

“Meeting tomorrow at 8 p.m. train station Mainz”.

Remark

The success of this cryptanalytic approach crucially depends on the LFSR
scenario, or in other words on a linearity profile like that in Figure 3.3 for the
keystream. If the keystream comes from another kind of source we expect
a linearity profile as in Figure 3.4 and shall not be able to make a stable
prediction before the plaintext is exhausted.



K. Pommerening, Bitstream Ciphers 84

We could also try nonlinear FSRs in an analoguous way as in Ap-
pendix B. Unfortunately most trials—even if the recursive profile stabilizes—
will find a trivial FSR that allows no prediction beyond the end of the already
known partial key sequence, see Appendix B. Then the approach “construct
– predict – adjust” cannot work better than by guessing more keystream
bits in a purely random way.


