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3.4 The Distribution of Linear Complexity

The distribution of the linear complexities of bit sequences of a fixed length
may be exactly determined.

A given sequence u = (u0, . . . , uN�1) 2 FN
2 has two possible extensions

ũ = (u0, . . . , uN ) 2 FN+1
2 by 1 bit. The relation between �(ũ) and �(u) is

given by the Massey recursion: Let

� =

(
0 if the prediction is correct,

1 otherwise.

Here “prediction” refers to the next outpit bit from the LFSR we constructed
for u. Then

�(ũ) =

8
><

>:

�(u) if � = 0,

�(u) if � = 1 and �(u) > N
2 ,

N + 1� �(u) if � = 1 and �(u)  N
2 .

In the middle case we need a new LFSR, but of the same length.
From these relations we derive a formula for the number µN (l) of all

sequences of length N that have a given linear complexity l. To this end let

MN (l) := {u 2 FN
2 | �(u) = l} for N � 1 and l 2 N,

µN (l) := #MN (l).

The following three statements are immediately clear:

• 0  µN (l)  2N ,

• µN (l) = 0 for l > N ,

•
PN

l=0 µN (l) = 2N .

From these we find explicit rules for the recursion from µN+1(l) to µN (l):

Case 1, 0  l  N
2 . Every u 2 FN

2 may be continued in two di↵erent ways:
uN = 0 or 1. Exactly one of them matches the prediction and leads to
ũ 2 MN+1(l). The other one leads to ũ 2 MN+1(N+1� l). Since there
are no other contributions to MN+1(l) we conclude µN+1(l) = µN (l).

Case 2, l = N+1
2 (may occur only for odd N). The correctly pre-

dicted uN leads to ũ 2 MN+1(l), however the same is true for the
mistakenly predicted one because of the Massey recursion. Hence
µN+1(l) = 2 · µN (l).

Case 3, l � N
2 +1. Both possible continuations lead to ũ 2 MN+1(l). Addi-

tionally we have one element from each of of the wrong predictions of
all u 2 MN+1�l(l) from case 1. Hence µN+1(l) = 2 ·µN (l)+µN+1�l(l).
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The following lemma summarizes these considerations:

Lemma 14 The frequency µN (l) of bit sequences of length N and linear
complexity l complies with the recursion

µN+1(l) =

8
><

>:

µN (l) if 0  l  N
2 ,

2 · µN (l) if l = N+1
2 ,

2 · µN (l) + µN+1�l(l) if l � N
2 + 1.

From this recursion we get an explicit formula:

Proposition 11 [Rueppel] The frequency µN (l) of bit sequences of length
N and linear complexity l is given by

µN (l) =

8
>>>><

>>>>:

1 if l = 0,

22l�1 if 1  l  N
2 ,

22(N�l) if N+1
2  l  N,

0 if l > N.

Proof. For n = 1 we have M1(0) = {(0)}, M1(1) = {(1)}, hence
µ1(0) = µ1(1) = 1.

Now we proceed by induction from N to N +1. The case l = 0 is trivial
since MN+1(0) = {(0, . . . , 0)}, µN+1(0) = 1. As before we distinguish three
cases:

Case 1, 1  l  N
2 . A forteriori 1  l  N+1

2 , and

µN+1(l) = µN (l) = 22l�1.

Case 2, l = N+1
2 (N odd). Here µN (l) = 22(N�l), and the exponent is

2N � 2l = 2N �N � 1 = N � 1 = 2l � 2, hence

µN+1(l) = 2 · 22(N�l) = 22l�2+1 = 22l�1.

Case 3, l � N
2 + 1. Again µN (l) = 22(N�l). For l0 = N + 1 � l we have

l0  N + 1� N
2 � 1 = N

2 , hence µN (l0) = 22l
0�1, and

µN+1(l) = 2µN (l) + µN (l0) = 22N�2l+1 + 22N�2l+1

= 22N�2l+2 = 22(N+1�l).

This completes the proof. 3

Table 3.1 gives an impression of the distribution.
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1 2 3 4 5 6 7 8 9 10 N !
0 1 1 1 1 1 1 1 1 1 1
1 1 2 2 2 2 2 2 2 2 2
2 1 4 8 8 8 8 8 8 8
3 1 4 16 32 32 32 32 32
4 1 4 16 64 128 128 128
5 1 4 16 64 256 512
6 1 4 16 64 256
7 1 4 16 64
8 1 4 16
9 1 4
10 1
l
#

Table 3.1: The distribution of linear complexity

Observations

• Row l is constant from N = 2l on (red numbers), the diagonals, from
N = 2l � 1 on (blue numbers).

• Each column N , from row l = 1 to row l = N , contains the powers
2k, k = 0, . . . , N � 1, each one exactly once—first the odd powers in
ascending order (red), followed by the even powers (blue) in descending
order.

• For every length N there is exactly one sequence of linear complexity
0 and N each: From Section 3.1 we know that these are the sequences
(0, . . . , 0, 0) and (0, . . . , 0, 1).

Figure 3.5 shows the histogram of this distribution for N = 10, Fig-
ure 3.6, for N = 100. The second histogram looks strikingly small. We’ll
clarify this phenomen in the following Section 3.5.
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Figure 3.5: The distribution of linear complexity for bitsequences of length
N = 10

Figure 3.6: The distribution of linear complexity for bitsequences of length
N = 100


