3.4 The Distribution of Linear Complexity

The distribution of the linear complexities of bit sequences of a fixed length may be exactly determined.

A given sequence $u=\left(u_{0}, \ldots, u_{N-1}\right) \in \mathbb{F}_{2}^{N}$ has two possible extensions $\tilde{u}=\left(u_{0}, \ldots, u_{N}\right) \in \mathbb{F}_{2}^{N+1}$ by 1 bit. The relation between $\lambda(\tilde{u})$ and $\lambda(u)$ is given by the Massey recursion: Let

$$
\delta= \begin{cases}0 & \text { if the prediction is correct } \\ 1 & \text { otherwise }\end{cases}
$$

Here "prediction" refers to the next outpit bit from the LFSR we constructed for u. Then

$$
\lambda(\tilde{u})= \begin{cases}\lambda(u) & \text { if } \delta=0, \\ \lambda(u) & \text { if } \delta=1 \text { and } \lambda(u)>\frac{N}{2}, \\ N+1-\lambda(u) & \text { if } \delta=1 \text { and } \lambda(u) \leq \frac{N}{2} .\end{cases}
$$

In the middle case we need a new LFSR, but of the same length.
From these relations we derive a formula for the number $\mu_{N}(l)$ of all sequences of length N that have a given linear complexity l. To this end let

$$
\begin{aligned}
M_{N}(l) & :=\left\{u \in \mathbb{F}_{2}^{N} \mid \lambda(u)=l\right\} \quad \text { for } N \geq 1 \text { and } l \in \mathbb{N} \\
\mu_{N}(l) & :=\# M_{N}(l)
\end{aligned}
$$

The following three statements are immediately clear:

- $0 \leq \mu_{N}(l) \leq 2^{N}$,
- $\mu_{N}(l)=0$ for $l>N$,
- $\sum_{l=0}^{N} \mu_{N}(l)=2^{N}$.

From these we find explicit rules for the recursion from $\mu_{N+1}(l)$ to $\mu_{N}(l)$:
Case $1,0 \leq l \leq \frac{N}{2}$. Every $u \in \mathbb{F}_{2}^{N}$ may be continued in two different ways: $u_{N}=0$ or 1 . Exactly one of them matches the prediction and leads to $\tilde{u} \in M_{N+1}(l)$. The other one leads to $\tilde{u} \in M_{N+1}(N+1-l)$. Since there are no other contributions to $M_{N+1}(l)$ we conclude $\mu_{N+1}(l)=\mu_{N}(l)$.

Case 2, $l=\frac{N+1}{2}$ (may occur only for odd N). The correctly predicted u_{N} leads to $\tilde{u} \in M_{N+1}(l)$, however the same is true for the mistakenly predicted one because of the Massey recursion. Hence $\mu_{N+1}(l)=2 \cdot \mu_{N}(l)$.

Case 3, $l \geq \frac{N}{2}+1$. Both possible continuations lead to $\tilde{u} \in M_{N+1}(l)$. Additionally we have one element from each of of the wrong predictions of all $u \in M_{N+1-l}(l)$ from case 1 . Hence $\mu_{N+1}(l)=2 \cdot \mu_{N}(l)+\mu_{N+1-l}(l)$.

The following lemma summarizes these considerations:

Lemma 14 The frequency $\mu_{N}(l)$ of bit sequences of length N and linear complexity l complies with the recursion

$$
\mu_{N+1}(l)= \begin{cases}\mu_{N}(l) & \text { if } 0 \leq l \leq \frac{N}{2} \\ 2 \cdot \mu_{N}(l) & \text { if } l=\frac{N+1}{2} \\ 2 \cdot \mu_{N}(l)+\mu_{N+1-l}(l) & \text { if } l \geq \frac{N}{2}+1\end{cases}
$$

From this recursion we get an explicit formula:
Proposition 11 [RUEPPEL] The frequency $\mu_{N}(l)$ of bit sequences of length N and linear complexity l is given by

$$
\mu_{N}(l)= \begin{cases}1 & \text { if } l=0 \\ 2^{2 l-1} & \text { if } 1 \leq l \leq \frac{N}{2} \\ 2^{2(N-l)} & \text { if } \frac{N+1}{2} \leq l \leq N \\ 0 & \text { if } l>N\end{cases}
$$

Proof. For $n=1$ we have $M_{1}(0)=\{(0)\}, M_{1}(1)=\{(1)\}$, hence $\mu_{1}(0)=\mu_{1}(1)=1$.

Now we proceed by induction from N to $N+1$. The case $l=0$ is trivial since $M_{N+1}(0)=\{(0, \ldots, 0)\}, \mu_{N+1}(0)=1$. As before we distinguish three cases:

Case 1, $1 \leq l \leq \frac{N}{2}$. A forteriori $1 \leq l \leq \frac{N+1}{2}$, and

$$
\mu_{N+1}(l)=\mu_{N}(l)=2^{2 l-1} .
$$

Case 2, $l=\frac{N+1}{2}(N$ odd $)$. Here $\mu_{N}(l)=2^{2(N-l)}$, and the exponent is $2 N-2 l=2 N-N-1=N-1=2 l-2$, hence

$$
\mu_{N+1}(l)=2 \cdot 2^{2(N-l)}=2^{2 l-2+1}=2^{2 l-1} .
$$

Case 3, $l \geq \frac{N}{2}+1$. Again $\mu_{N}(l)=2^{2(N-l)}$. For $l^{\prime}=N+1-l$ we have $l^{\prime} \leq N+1-\frac{N}{2}-1=\frac{N}{2}$, hence $\mu_{N}\left(l^{\prime}\right)=2^{2 l^{\prime}-1}$, and

$$
\begin{aligned}
\mu_{N+1}(l) & =2 \mu_{N}(l)+\mu_{N}\left(l^{\prime}\right)=2^{2 N-2 l+1}+2^{2 N-2 l+1} \\
& =2^{2 N-2 l+2}=2^{2(N+1-l)}
\end{aligned}
$$

This completes the proof.

Table 3.1 gives an impression of the distribution.

	1	2	3	4	5	6	7	8	9	10	$N \rightarrow$
0	1	1	1	1	1	1	1	1	1	1	
1	1	2	2	2	2	2	2	2	2	2	
2		1	4	8	8	8	8	8	8	8	
3			1	4	16	32	32	32	32	32	
4				1	4	16	64	128	128	128	
5					1	4	16	64	256	512	
6						1	4	16	64	256	
7							1	4	16	64	
8								1	4	16	
9									1	4	
10										1	
l											
\downarrow											

Table 3.1: The distribution of linear complexity

Observations

- Row l is constant from $N=2 l$ on (red numbers), the diagonals, from $N=2 l-1$ on (blue numbers).
- Each column N, from row $l=1$ to row $l=N$, contains the powers $2^{k}, k=0, \ldots, N-1$, each one exactly once-first the odd powers in ascending order (red), followed by the even powers (blue) in descending order.
- For every length N there is exactly one sequence of linear complexity 0 and N each: From Section 3.1 we know that these are the sequences $(0, \ldots, 0,0)$ and $(0, \ldots, 0,1)$.

Figure 3.5 shows the histogram of this distribution for $N=10$, Figure 3.6 , for $N=100$. The second histogram looks strikingly small. We'll clarify this phenomen in the following Section 3.5 .

Figure 3.5: The distribution of linear complexity for bitsequences of length $N=10$

Figure 3.6: The distribution of linear complexity for bitsequences of length $N=100$

