
Chapter 3

Feedback Shift Registers and
Linear Complexity

As we saw in the last chapter LFSRs are cryptographically weak if naively
used. Also nonlinear FSRs admit an e�cient prediction algorithm via the
Noetherian principle undermining their security.

In this chapter we’ll look at LFSRs from the opposite direction: Given
a bit sequence, how to generate it by an LFSR in an optimal way? The
minimal length of such an LFSR will turn out to be a useful measure of
predictability—even a very good measure except for a few outliers.

69

K. Pommerening, Bitstream Ciphers 70

3.1 The Linear Complexity of a Bit Sequence

We consider bit sequences u = (ui)i2N 2 FN
2—for the moment infinite ones.

We search an LFSR of smallest length that produces the sequence.
If the sequence is generated by an LFSR, it must be periodic. On the

other hand every periodic sequence is generated by an LFSR whose length
is the sum of the lengths of preperiod and period—namely by the circular

LFSR that feeds back the bit where the period begins: If ul+i = uk+i for
i � 0, then the taps are al�k = 1, ai = 0 else, as in Figure 3.1. This
consideration shows:

Lemma 11 A bit sequence u 2 FN
2 is generated by an LFSR if and only if

it is (eventually) periodic.

cell 1 l � k l

. . . uk . . . u0- -

Figure 3.1: A circular LFSR

Definition The linear complexity �(u) of a bit sequence u 2 FN
2 is the

minimal length of an LFSR that generates u.

For u constant 0 let �(u) = 0, for a non-periodic u set �(u) = 1.

This concept of complexity uses the quite special machine model of an
LFSR.

Remarks and examples

1. Let ⌧(u) be the sum of the lengths of the preperiod and the period of
u. Assume that u is generated by an LFSR of length l. Then

�(u) ⌧(u) 2l � 1 and �(u) l.

2. The periodically repeated sequence 0, . . . , 0, 1 (l�1 zeroes) has period
l and linear complexity l. An LFSR of length < l would start with the
null vector as initial value and thus force the complete output sequence
to zero.

For a finite bit sequence u = (u0, . . . , uN�1) 2 FN
2 the linear complexity is

analogously defined. In particular �(u) is the minimum integer l for which
there exist a1, . . . , al 2 F2 with

ui = a1ui�1 + · · ·+ alui�l for i = l, . . . , N � 1.

K. Pommerening, Bitstream Ciphers 71

3. For u 2 FN
2 we have 0 �(u) N .

4. �(u) = 0 () u0 = · · · = uN�1 = 0.

5. �(u) = N () u = (0, . . . , 0, 1). The implication “(=” follows as in
remark 2. For the reverse direction assume uN�1 = 0. Then we can
take the LFSR of length N � 1 with feedback constant 0—the two
LFSRs

0|uN�2| . . . |u0 -

0

- uN�2| . . . |u0 -

both generate the same output of length N . This contradiction shows
that uN�1 = 1. Assume there is a 1 at an earlier position. Then we can
take the LFSR of length N � 1 that feeds back exactly this position—
the two LFSRs

1| . . . |1| . . . -

- . . . |1| . . . -

both generate the same output up to length N .

6. From the first 2�(u) bits of the sequence u all the following bits are
predictable. (Note that the cryptanalyst who knows that many bits of
the sequence, but no further bits, also doesn’t know �(u). Therefore
she doesn’t know that her predictions will be correct from now on.
This ignorance doesn’t prevent her from correctly predicting bit for
bit!)

K. Pommerening, Bitstream Ciphers 72

3.2 Synthesis of LFSRs

In this section we treat the problem of how to find an LFSR of shortest
length that generates a given finite bit sequence. In section 2.6 we described a
method of finding linear relations for sequence elements from a quite general
generator. This might result in an LFSR, but anyway the linear relations
might change from step to step and there appears no easy way of getting an
optimal LFSR.

Here we follow another approach that solves our problem in a surprisingly
easy way: the BM-algorithm, named after Berlekamp (1968 in a di↵erent
context) and Massey (1969).

We don’t use any special properties of the field F2, so we work over an
arbitrary field K. Our goal is to construct a homogeneous linear generator of
the smallest possible recursion depth l that generates a given finite sequence
u 2 KN .

We consider a homogeneous linear generator whose recursion formula is

(1) uk = a1uk�1 + · · ·+ aluk�l for k = l, . . . , N � 1.

Its coe�cient vector is (a1, . . . , al) 2 K l. The polynomial

' = 1� a1T � · · ·� alT
l 2 K[T]

is called feedback polynomial.

Note Don’t confuse this polynomial with the feedback function

s(u0, . . . , ul�1) = a1ul�1 + · · ·+ alu0.

The feedback polynomial is the reciprocal polynomial of the characteristic
polynomial

� = Det(T · 1�A) = T l � a1T
l�1 � · · ·� al

of the companion matrix

A =

0

BBB@

0 1 . . . 0
. . .

. . .

1
al al�1 . . . a1

1

CCCA
.

These two polynomials are related by the formula

' = T l · �(1
T
).

Lemma 12 Let the sequence u = (u0, . . . , un�1) 2 Kn be a seg-
ment of the output of the linear generator (1), but not the sequence
û = (u0, . . . , un) 2 Kn+1. Then every homogeneous linear generator of
length m � 1 that generates û has m � n+ 1� l.

K. Pommerening, Bitstream Ciphers 73

Proof. Case 1: l � n. Then obviously l +m � n+ 1.
Case 2: l n� 1. Assume m n� l. We have

uj = a1uj�1 + · · ·+ aluj�l for l j n� 1.

Let (b1, . . . , bm) be the coe�cient vector of a homogeneous linear generator
that produces û. Then

uj = b1uj�1 + · · ·+ bmuj�m for m j n.

We deduce

un 6= a1un�1 + · · ·+ alun�l

=
lX

i=1

ai ·
mX

k=1

bkun�i�k

| {z }
un�i

[since n� l � m]

=
mX

k=1

bk ·
lX

i=1

aiun�k�i

| {z }
un�k

= un,

contradiction. 3

Consider a sequence u 2 KN . For 0 n N let �n(u) = �n be the
smallest recursion depth for which a homogeneous linear generator exists
that produces (u0, . . . , un�1).

Lemma 13 For every sequence u 2 KN we have:

(i) �n+1 � �n for all n.

(ii) There is a homogeneous linear generator of recursion depth �n that
produces (u0, . . . , un) if and only if �n+1 = �n.

(iii) If there is no such generator, then

�n+1 � n+ 1� �n.

Proof. (i) Every generator that produces (u0, . . . , un) a forteriori produces
(u0, . . . , un�1).

(ii) follows from (i).
(iii) The precondition of Lemma 12 is true for every generator of

(u0, . . . , un�1). 3

K. Pommerening, Bitstream Ciphers 74

Proposition 10 [Massey] Let u 2 KN and 0 n N � 1. Let
�n+1(u) 6= �n(u). Then

�n(u)
n

2
and �n+1(u) = n+ 1� �n(u).

Thus the linear complexity may jump only if �n (we often omit u in the no-
tation) is “below the diagonal,” and then it jumps to the symmetric position
“above the diagonal.” An illustration is in Figure 3.2.

Proof. First we consider the easy case �n = 0: Here u0 = . . . = un�1 = 0.
If un = 0, then �n+1 = �n = 0, leaving nothing to prove. Otherwise un 6= 0,
and then �n+1 = n+ 1 = n+ 1� �n by remark 5 in 3.1.

In general the first statement follows from the second one: We have
�n < �n+1, hence 2�n < �n + �n+1 = n+ 1.

Now we prove the second statement by induction on n. In the case n = 0
we have �0 = 0—this case is already settled.

Now let n � 1. We may assume l := �n � 1. Let

uj = a1uj�1 + · · ·+ aluj�l for j = l, . . . , n� 1;

hence the feedback polynomial is

' := 1� a1T � · · ·� alT
l 2 K[T].

Let the “n-th discrepancy” be defined as

dn := un � a1un�1 � · · ·� alun�l.

If dn = 0, then the generator outputs un as the next element, and there is
nothing to prove. Otherwise let dn 6= 0. Let r be the length of the segment
before the last increase of linear complexity, thus

t := �r < l, �r+1 = l.

By induction l = r + 1� t. We have a relation

uj = b1uj�1 + · · ·+ btuj�t for j = t, . . . , r � 1,

the corresponding feedback polynomial is

 := 1� b1T � · · ·� btT
t 2 K[T],

and the corresponding r-th discrepancy,

dr := ur � b1ur�1 � · · ·� btur�t 6= 0.

In the case t = 0 we have = 1 and dr = ur. Now we form the polynomial

⌘ := '� dn
dr

· Tn�r · = 1� c1T � · · ·� cmTm 2 K[T]

K. Pommerening, Bitstream Ciphers 75

with m = deg ⌘. What is the output of the corresponding homogeneous
linear generator? We have

uj �
mX

i=1

ciuj�i = uj �
lX

i=1

aiuj�i �
dn
dr

·
"
uj�n+r �

tX

i=1

biuj�n+r�i

#

= 0 for j = m, . . . , n;

for j = m, . . . , n � 1 this follows directly, for j = n via the intermediate
result dn � [dn/dr] · dr. Hence the output is (u0, . . . , un). Now we have

�n+1 m max{l, n� r + t} = max{l, n+ 1� l}.

Since linear complexity grows monotonically we conclude m > l, and by
Lemma 12 we get m � n+ 1� l. Hence m = n+ 1� l and �n+1 = m. This
proves the proposition. 3

Corollary 1 If dn 6= 0 and �n n
2 , then

�n+1 = n+ 1� �n > �n.

Proof. By Lemma 12 we have �n+1 � n+ 1� �n, thus �n+1 � n
2 + 1 > �n.

By Proposition 10 we conclude �n+1 = n+ 1� �n. 3

During the successive construction of a linear generator in the proof of
the proposition, in each iteration step one of two cases occurs:

• dn = 0: then �n+1 = �n.

• dn 6= 0: then

– �n+1 = �n if �n > n
2 ,

– �n+1 = n+ 1� �n if �n n
2 .

In particular we always have:

• If �n > n
2 , then �n+1 = �n.

• If �n n
2 , then �n+1 = �n or �n+1 = n+ 1� �n.

By the way we found an alternative method of predicting LFSRs:

Corollary 2 If u 2 FN
2 is generated by an LFSR of length l, then one

such LFSR may be determined from u0, . . . , u2l�1.

Proof. Assume n is the first index � 2l such that dn 6= 0. Then �n l n
2 ,

thus �n+1 = n+ 1� �n � l + 1, contradiction. 3

K. Pommerening, Bitstream Ciphers 76

3.3 The Berlekamp-Massey Algorithm

The proof of Proposition 10 is constructive: It contains an algorithm that
successively builds a linear generator. For the step from length n to length
n+ 1 three cases (1, 2a, 2b) are possible:

Case 1 dn = 0, hence the generator with feedback polynomial ' next out-
puts un: Then ' and l remain unchanged, and so remain , t, r, dr.

Case 2 dn 6= 0, hence the generator with feedback polynomial ' doesn’t
output un as next element: Then we form a new feedback polynomial
⌘ whose corresponding generator outputs (u0, . . . , un). We distinguish
between:

a) l > n
2 : Then �n+1 = �n. We replace ' by ⌘ and leave l, , t, r, dr

unchanged.

b) l n
2 : Then �n+1 = n+ 1� �n. We replace ' by ⌘, l by n+ 1� l,

 by ', t by l, r by n, dr by dn.

So a semi-formal description of the Berlekamp-Massey algorithm (or
BM algorithm) is:

Input: A sequence u = (u0, . . . , uN�1) 2 KN .

Output: The linear complexity �N (u),

the feedback polynomial ' of a linear generator of length �N (u) that
produces u.

Auxiliary variables: n = current index, initialized by n := 0,

l = current linear complexity, initialized by l := 0,

' = current feedback polynomial = 1� a1T � · · ·� alT l, initialized by
' := 1,

invariant condition: ui = a1ui�1 + · · ·+ alui�l for l i < n,

d = current discrepancy = un � a1un�1 � · · ·� alun�l,

r = previous index, initialized by r := �1,

t = previous linear complexity,

 = previous feedback polynomial = 1 � b1T � · · · � btT t, initialized
by := 1,

invariant condition: ui = b1ui�1 + · · ·+ btui�t for t i < r,

d0 = previous discrepancy = ur � b1ur�1 � · · ·� btur�t, initialized by
d0 := 1,

⌘ = new feedback polynomial,

m = new linear complexity.

K. Pommerening, Bitstream Ciphers 77

Iteration steps: For n = 0, . . . , N � 1:

d := un � a1un�1 � · · ·� alun�l

If d 6= 0
⌘ := '� d

d0 · T
n�r ·

If l n
2 [linear complexity increases]

m := n+ 1� l
t := l
l := m
 := '
r := n
d0 := d

' := ⌘
Output: �N (u) := l and '

Of course we may output also the complete sequence (�n).
As an example we apply the algorithm to the sequence 001101110. The

steps where d 6= 0, l n
2 , are tagged by “[!]”.

preconditions of the step actions

n = 0 u0 = 0 l = 0 ' = 1 d := u0 = 0
r = �1 d0 = 1 t = = 1
n = 1 u1 = 0 l = 0 ' = 1 d := u1 = 0
r = �1 d0 = 1 t = = 1
n = 2 u2 = 1 l = 0 ' = 1 d := u2 = 1 [!]
r = �1 d0 = 1 t = = 1 ⌘ := 1� T 3

m := 3
n = 3 u3 = 1 l = 3 ' = 1� T 3 d := u3 � u0 = 1
r = 2 d0 = 1 t = 0 = 1 ⌘ := 1� T � T 3

n = 4 u4 = 0 l = 3 ' = 1� T � T 3 d := u4 � u3 � u1 = �1
r = 2 d0 = 1 t = 0 = 1 ⌘ := 1� T + T 2 � T 3

n = 5 u5 = 1 l = 3 ' = 1� T + T 2 � T 3 d := u5 � u4 + u3 � u2 = 1
r = 2 d0 = 1 t = 0 = 1 ⌘ := 1� T + T 2 � 2T 3

From now on the results di↵er depending on the characteristic of the
base field K. First assume charK 6= 2. Then the procedure continues as
follows:

K. Pommerening, Bitstream Ciphers 78

preconditions of the step actions

n = 6 u6 = 1 l = 3 d := u6 � u5 + u4 � 2u3 = �2 [!]
' = 1� T + T 2 � 2T 3 ⌘ = 1� T + T 2 � 2T 3 + 2T 4

r = 2 d0 = 1 t = 0 = 1 m := 4
n = 7 u7 = 1 l = 4 d := u7 � u6 + u5 � 2u4 + 2u3 = 3
' = 1� T + T 2 � 2T 3 + 2T 4 ⌘ = 1 + 1

2T � 1
2T

2 � 1
2T

3 � T 4

r = 6 d0 = �2 t = 3
 = 1� T + T 2 � 2T 3

n = 8 u8 = 0 l = 4 d := u8 +
1
2u7 �

1
2u6 �

1
2u5 � u4 = �1

2 [!]
' = 1 + 1

2T � 1
2T

2 � 1
2T

3 � T 4 ⌘ := 1 + 1
2T � 3

4T
2 � 1

4T
3 � 5

4T
4 + 1

2T
5

r = 6 d0 = �2 t = 3 m := 5
 = 1� T + T 2 � 2T 3

The resulting sequence of linear complexities is

�0 = 0,�1 = 0,�2 = 0,�3 = 3,�4 = 3,�5 = 3,�6 = 3,�7 = 4,�8 = 4,�9 = 5,

and the generating formula is

ui = �1

2
ui�1 +

3

4
ui�2 +

1

4
ui�3 +

5

4
ui�4 �

1

2
ui�5 for i = 5, . . . , 8.

For charK = 2 the last three iteration steps look di↵erently:

preconditions of the step actions

n = 6 u6 = 1 l = 3 d := u6 � u5 � u4 = 0
' = 1� T � T 2

r = 2 d0 = 1 t = 0 = 1
n = 7 u7 = 1 l = 3 d := u7 � u6 � u5 = 1 [!]
' = 1� T � T 2 ⌘ = 1� T � T 2 � T 5

r = 2 d0 = 1 t = 0 = 1 m := 5
n = 8 u8 = 0 l = 5 d := u8 � u7 � u6 � u3 = 1
' = 1� T � T 2 � T 5 ⌘ := 1� T 3 � T 5

r = 7 d0 = 1 t = 3 = 1� T � T 2

In this case the sequence of linear complexities is

�0 = 0,�1 = 0,�2 = 0,�3 = 3,�4 = 3,�5 = 3,�6 = 3,�7 = 3,�8 = 5,�9 = 5,

and the generating formula is

ui = ui�3 + ui�5 for i = 5, . . . , 8.

A Sage program for the char 2 case is in Sage Example 3.1. It uses the
function bmAlg from Appendix C.2.

Figure 3.2 shows the growth of the linear complexities.

K. Pommerening, Bitstream Ciphers 79

Sage Example 3.1 Applying the BM-algorithm

sage: u = [0,0,1,1,0,1,1,1,0]

sage: res = bmAlg(u)

sage: res

[[0, 0, 0, 3, 3, 3, 3, 3, 5, 5], T^5 + T^3 + 1]

- n
0 1 2 3 4 5 6 7 8 9

6
�n

1

2

3

4

5

������������������������
n
2

s s s

s s s s s
s s

q

q
s s q

Figure 3.2: The sequence of linear complexities. The red line is for charK 6=
2.

The cost of the BM algorithm is O(N2 logN).
The sequence (�n)n2N or (for finite output sequences) (�n)0nN is called

the linearity profile of the sequence u.
Here is the linearity profile of the first 128 bits of the sequence that we

generated by an LFSR in Section 1.10:

(0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 7, 7, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12,

12, 13, 13, 13, 13, 16, 16, 16, 16, . . .),

its graphic representation is in Figure 3.3:
In Section 4.1 we’ll generate a “perfect” pseudorandom sequence. The

linearity profile of its first 128 bits is:

(0, 1, 1, 1, 1, 4, 4, 4, 4, 5, 5, 5, 5, 8, 8, 8, 8, 8, 8, 8, 12, 12, 12, 12,

12, 12, 12, 12, 12, 17, 17, 17, 17, 17, 17, 18, 18, 18, 20, 20, 20, 21, 21,

22, 22, 22, 24, 24, 24, 24, 24, 24, 28, 28, 28, 28, 28, 29, 29, 30, 30, 31,

K. Pommerening, Bitstream Ciphers 80

20 40 60 80 100 120

2

4

6

8

10

12

14

16

Figure 3.3: Linearity profile of an LFSR sequence

31, 32, 32, 32, 34, 34, 34, 34, 36, 36, 36, 37, 37, 38, 38, 39, 39, 40, 40,

41, 41, 41, 41, 41, 41, 46, 46, 46, 46, 46, 46, 47, 47, 48, 48, 49, 49, 50,

50, 50, 52, 52, 52, 53, 53, 54, 54, 54, 54, 54, 54, 54, 54, 61, 61, 61, 61,

61, 61, 61, 61, 61, 63, 63, 63, 64, 64),

graphically illustrated by Figure 3.4.

20 40 60 80 100 120

10

20

30

40

50

60

Figure 3.4: Linearity profile of a perfect pseudorandom sequence

In the second example we see a somewhat irregular oscillation around
the diagonal, as should be expected for a “good” random sequence. The first
example also shows a similar behaviour, but only until the linear complexity
of the sequence is reached.

K. Pommerening, Bitstream Ciphers 81

3.4 The BM Algorithm as a Cryptanalytic Tool

We revisit the cryptanalysis of an XOR ciphertext in Section 2.3 and explore
how well the BM algorithm performs in this example following the cycle
“construct – predict – adjust” as in Section 2.10. Remember the ciphertext:

10011100 10100100 01010110 10100110 01011101 10101110

01100101 10000000 00111011 10000010 11011001 11010111

00110010 11111110 01010011 10000010 10101100 00010010

11000110 01010101 00001011 11010011 01111011 10110000

10011111 00100100 00001111 01010011 11111101

For use with SageMath we provisionally fix its first 48 bits:

ciphtext = [1,0,0,1,1,1,0,0,1,0,1,0,0,1,0,0,0,1,0,1,0,

1,1,0,1,0,1,0,0,1,1,0,0,1,0,1,1,1,0,1,1,0,1,0,1,1,1,0]

As in Section 2.3 we suspect that the cipher is XOR with a key stream from
an LFSR, but now of unknown length. As before we guess that the text
is in German and might begin with the word “Tre↵punkt”. To solve the
cryptogram we need some bits of plaintext, say the first t letters (assumed
in the 8-bit ISO 8859-1 character set), making up 8t bits of the key stream.

Let us tentatively start with two letters of plaintext: Tr, and the corre-
sponding 16 keystream bits

10011100 10100100 (ciphertext)

Tr = 01010100 01110010 (assumed plaintext)

-------- --------

11001000 11010110 (keystream)

After attaching the Sage modules Bitblock.sage, FSR.sage, and
bmAlg.sage from Appendix C (or Part II, Appendix E.1) we use the in-
teractive commands

sage: kbits = [1,1,0,0,1,0,0,0,1,1,0,1,0,1,1,0]

sage: res = bmAlg(kbits)

sage: fbpol = res[1]; fbpol

T^8 + T^7 + T^5 + T^4 + T^3 + T^2 + T + 1

This result tells us that the shortest LFSR that generates our 16 keystream
bits has length 8 and the taps 1, 2, 3, 4, 5, 7, 8 set. Next we initialize this
LFSR in SageMath (note the reverse order of the bits in the initial state):

sage: coeff = [1,1,1,1,1,0,1,1]

sage: reg = LFSR(coeff)

sage: start = [0,0,0,1,0,0,1,1]

sage: reg.setState(start)

K. Pommerening, Bitstream Ciphers 82

Using this LFSR we predict 32 more, hence altogether 48 tentative keystream
bits:

sage: testkey = reg.nextBits(48); testkey

[1,1,0,0,1,0,0,0,1,1,0,1,0,1,1,0,1,0,0,1,1,1,0,0,

0,0,0,0,0,1,1,0,0,0,0,1,0,1,1,1,0,1,1,1,1,0,0,0]

These tentative key bits yield 48 bits of experimental plaintext, represented
by 6 bytes in decimal notation:

sage: testplain = xor(ciphtext,testkey)

sage: testtext = []

sage: for i in range(6):

block = testplain[8*i:8*i+8]

nr = bbl2int(block)

testtext.append(nr)

sage: testtext

[84, 114, 202, 160, 74, 214]

or, written as ISO 8859-1 characters, “TrE̊tJÖ” (where t represents the
non-breaking space)—a definitive failure.

So let us guess one more letter of plaintext: Tre, and use the correspond-
ing 24 keystream bits

10011100 10100100 01010110 (ciphertext)

Tre = 01010100 01110010 01100101 (assumed plaintext)

-------- -------- --------

11001000 11010110 00110011 (keystream)

As above we apply the BM algorithm interactively and get an LFSR of length
12 with feedback polynomial T 12+T 10+T 9+T 8+T 6+T 5+T 3+T+1, hence
taps 1, 3, 5, 6, 8, 9, 10, 12. Setting up the LFSR and predicting 48 keystream
bits:

sage: coeff = [1,0,1,0,1,1,0,1,1,1,0,1]

sage: reg = LFSR(coeff)

sage: start = [1,0,1,1,0,0,0,1,0,0,1,1]

sage: reg.setState(start)

sage: testkey = reg.nextBits(48); testkey

[1,1,0,0,1,0,0,0,1,1,0,1,0,1,1,0,0,0,1,1,0,0,1,1,

0,1,0,1,0,0,0,0,1,0,0,0,1,0,1,1,0,1,0,1,0,0,0,1]

we again get 48 bits of experimental plaintext, as bytes in decimal notation:
[84, 114, 101, 246, 214, 255]. The translation to ISO 8859-1 yields the
next flop: “TreöÖÿ”.

As next step we use four letters of known plaintext Tref (as in Sec-
tion 2.3) and derive 32 tentative keystream bits:

K. Pommerening, Bitstream Ciphers 83

10011100 10100100 01010110 10100110 (ciphertext)

Tref = 01010100 01110010 01100101 01100110 (assumed plaintext)

-------- -------- -------- --------

11001000 11010110 00110011 11000000 (keystream)

The BM algorithm yields an LFSR of length 16 with feedback polynomial
T 16 + T 5 + T 3 + T 2 +1, hence taps 2, 3, 5, 16. It predicts 48 keystream bits:

sage: coeff = [0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,1]

sage: reg = LFSR(coeff)

sage: start = [0,1,1,0,1,0,1,1,0,0,0,1,0,0,1,1]

sage: reg.setState(start)

sage: testkey = reg.nextBits(48); testkey

[1,1,0,0,1,0,0,0,1,1,0,1,0,1,1,0,0,0,1,1,0,0,1,1,

1,1,0,0,0,0,0,0,0,0,1,1,1,0,1,1,1,0,0,0,1,1,1,0]

and the experimental plaintext [84, 114, 101, 102, 102, 32] that looks
promising: “Tre↵t” (where t here represents simple space character).

Sure of victory we decipher the complete text:

sage: cstream = "10011100101...1111111101"

sage: fullcipher = str2bbl(cstream)

sage: start = [0,1,1,0,1,0,1,1,0,0,0,1,0,0,1,1]

sage: reg.setState(start)

sage: keystream = reg.nextBits(232)

sage: fullplain = xor(fullcipher,keystream)

sage: fulltext = []

sage: for i in range(232/8):

block = fullplain[8*i:8*i+8]

nr = bbl2int(block)

fulltext.append(nr)

sage: fulltext

[84,114,101,102,102,32,109,111,114,103,101,110,32,56,32,85,104,114,

32,66,97,104,110,104,111,102,32,77,90]

T r e f f _ m o r g e n _ 8 _ U h r

_ B a h n h o f _ M Z

“Meeting tomorrow at 8 p.m. train station Mainz”.

Remark

The success of this cryptanalytic approach crucially depends on the LFSR
scenario, or in other words on a linearity profile like that in Figure 3.3 for the
keystream. If the keystream comes from another kind of source we expect
a linearity profile as in Figure 3.4 and shall not be able to make a stable
prediction before the plaintext is exhausted.

K. Pommerening, Bitstream Ciphers 84

We could also try nonlinear FSRs in an analoguous way as in Ap-
pendix B. Unfortunately most trials—even if the recursive profile stabilizes—
will find a trivial FSR that allows no prediction beyond the end of the already
known partial key sequence, see Appendix B. Then the approach “construct
– predict – adjust” cannot work better than by guessing more keystream
bits in a purely random way.

K. Pommerening, Bitstream Ciphers 85

3.5 The Distribution of Linear Complexity

The distribution of the linear complexities of bit sequences of a fixed length
can be determined exactly.

A given sequence u = (u0, . . . , uN�1) 2 FN
2 has two possible extensions

ũ = (u0, . . . , uN) 2 FN+1
2 by 1 bit. The relation between �(ũ) and �(u) is

given by the Massey recursion: Let

� =

(
0 if the prediction is correct,

1 otherwise.

Here “prediction” refers to the next outpit bit from the LFSR we constructed
for u. Then

�(ũ) =

8
><

>:

�(u) if � = 0,

�(u) if � = 1 and �(u) > N
2 ,

N + 1� �(u) if � = 1 and �(u) N
2 .

In the middle case we need a new LFSR, but of the same length.
From these relations we derive a formula for the number µN (l) of all

sequences of length N that have a given linear complexity l. To this end let

MN (l) := {u 2 FN
2 | �(u) = l} for N � 1 and l 2 N,

µN (l) := #MN (l).

The following three statements are immediately clear:

• 0 µN (l) 2N ,

• µN (l) = 0 for l > N ,

•
PN

l=0 µN (l) = 2N .

From these we find explicit rules for the recursion from µN+1(l) to µN (l):

Case 1, 0 l N
2 . Every u 2 FN

2 may be continued in two di↵erent ways:
uN = 0 or 1. Exactly one of them matches the prediction and leads to
ũ 2 MN+1(l). The other one leads to ũ 2 MN+1(N+1� l). Since there
are no other contributions to MN+1(l) we conclude µN+1(l) = µN (l).

Case 2, l = N+1
2 (may occur only for odd N). The correctly pre-

dicted uN leads to ũ 2 MN+1(l), however the same is true for the
mistakenly predicted one because of the Massey recursion. Hence
µN+1(l) = 2 · µN (l).

Case 3, l � N
2 +1. Both possible continuations lead to ũ 2 MN+1(l). Addi-

tionally we have one element from each of of the wrong predictions of
all u 2 MN+1�l(l) from case 1. Hence µN+1(l) = 2 ·µN (l)+µN+1�l(l).

K. Pommerening, Bitstream Ciphers 86

The following lemma summarizes these considerations:

Lemma 14 The frequency µN (l) of bit sequences of length N and linear
complexity l complies with the recursion

µN+1(l) =

8
><

>:

µN (l) if 0 l N
2 ,

2 · µN (l) if l = N+1
2 ,

2 · µN (l) + µN+1�l(l) if l � N
2 + 1.

From this recursion we get an explicit formula:

Proposition 11 [Rueppel] The frequency µN (l) of bit sequences of length
N and linear complexity l is given by

µN (l) =

8
>>>><

>>>>:

1 if l = 0,

22l�1 if 1 l N
2 ,

22(N�l) if N+1
2 l N,

0 if l > N.

Proof. For n = 1 we have M1(0) = {(0)}, M1(1) = {(1)}, hence
µ1(0) = µ1(1) = 1.

Now we proceed by induction from N to N +1. The case l = 0 is trivial
since MN+1(0) = {(0, . . . , 0)}, µN+1(0) = 1. As before we distinguish three
cases:

Case 1, 1 l N
2 . A forteriori 1 l N+1

2 , and

µN+1(l) = µN (l) = 22l�1.

Case 2, l = N+1
2 (N odd). Here µN (l) = 22(N�l), and the exponent is

2N � 2l = 2N �N � 1 = N � 1 = 2l � 2, hence

µN+1(l) = 2 · 22(N�l) = 22l�2+1 = 22l�1.

Case 3, l � N
2 + 1. Again µN (l) = 22(N�l). For l0 = N + 1 � l we have

l0 N + 1� N
2 � 1 = N

2 , hence µN (l0) = 22l
0�1, and

µN+1(l) = 2µN (l) + µN (l0) = 22N�2l+1 + 22N�2l+1

= 22N�2l+2 = 22(N+1�l).

This completes the proof. 3

Table 3.1 gives an impression of the distribution.

K. Pommerening, Bitstream Ciphers 87

1 2 3 4 5 6 7 8 9 10 N !
0 1 1 1 1 1 1 1 1 1 1
1 1 2 2 2 2 2 2 2 2 2
2 1 4 8 8 8 8 8 8 8
3 1 4 16 32 32 32 32 32
4 1 4 16 64 128 128 128
5 1 4 16 64 256 512
6 1 4 16 64 256
7 1 4 16 64
8 1 4 16
9 1 4
10 1
l
#

Table 3.1: The distribution of linear complexity

Observations

• Row l is constant from N = 2l on (red numbers), the diagonals, from
N = 2l � 1 on (blue numbers).

• Each column N , from row l = 1 to row l = N , contains the powers
2k, k = 0, . . . , N � 1, each one exactly once—first the odd powers in
ascending order (red), followed by the even powers (blue) in descending
order.

• For every length N there is exactly one sequence of linear complexity
0 and N each: From Section 3.1 we know that these are the sequences
(0, . . . , 0, 0) and (0, . . . , 0, 1).

Figure 3.5 shows the histogram of this distribution for N = 10, Fig-
ure 3.6, for N = 100. The second histogram looks strikingly small. We’ll
clarify this phenomen in the following Section 3.6.

K. Pommerening, Bitstream Ciphers 88

Figure 3.5: The distribution of linear complexity for bitsequences of length
N = 10

Figure 3.6: The distribution of linear complexity for bitsequences of length
N = 100

K. Pommerening, Bitstream Ciphers 89

3.6 The Mean Value of the Linear Complexity

From the exact distribution of the linear complexity we also can exactly
determine the mean value and the variance (for fixed length N):

Theorem 3 (Rueppel) Explicit formulas for the mean value

EN =
1

2N
·
X

u2FN
2

�(u)

and the variance VN of the linear complexity of all bit sequences of length N
are:

EN =
N

2
+

2

9
+

"

18
� N

3 · 2N � 2

9 · 2N ⇡ N

2
,

VN =
86

81
� 14� "

27
· N

2N
� 82� 2"

81
· 1

2N
� 9N2 + 12N + 4

81
· 1

22N
⇡ 86

81

where " = 0 for N even, " = 1 for N odd (" is the parity of N).

Remarkably the variance is almost independent of N . Thus almost all linear
complexities vary around the mean value in a small strip only that is (almost)
independent of N and becomes relatively more narrow with increasing N as
illustrated by Figures 3.5 and 3.6.

For the proof we have to make a small detour. We’ll encounter sums that
have a nice expression using a well-known trick from calculus.

Lemma 15 For the derivatives of the function

f : R� {1} �! R, f(x) =
xr+1 � x

x� 1
,

we have the formulas:

f 0(x) =
1

(x� 1)2
·
⇥
rxr+1 � (r + 1)xr + 1

⇤
,

f 00(x) =
1

(x� 1)3
·
⇥
(r2 � r)xr+1 � 2(r2 � 1)xr + (r2 + r)xr�1 � 2

⇤
,

x2f 00(x)+xf 0(x) =
x

(x� 1)3
·
⇥
r2xr+2 � (2r2 + 2r � 1)xr+1 + (r + 1)2xr � x� 1

⇤
.

Proof. By direct calculation. 3

Using these formulas for f we explicitly calculate some sums:

K. Pommerening, Bitstream Ciphers 90

Corollary 1 For all x 2 R, x 6= 1, we have:

rX

i=1

xi =
1

x� 1
·
⇥
xr+1 � x

⇤
,

rX

i=1

ixi =
x

(x� 1)2
·
⇥
rxr+1 � (r + 1)xr + 1

⇤
,

rX

i=1

i2xi =
x

(x� 1)3
·
⇥
r2xr+2 � (2r2 + 2r � 1)xr+1 + (r + 1)2xr � x� 1

⇤
.

Proof. From the sum formula for the geometric series we conclude

rX

i=1

xi = x ·
r�1X

i=0

xi = x · x
r � 1

x� 1
= f(x),

rX

i=1

ixi = x ·
rX

i=1

ixi�1 = x · f 0(x),

rX

i=1

i2xi =
rX

i=1

i(i� 1)xi +
rX

i=1

ixi = x2 · f 00(x) + x · f 0(x).

Therefore the claimed formulas follow from Lemma 15. 3

Corollary 2

rX

i=1

i 22i�1 =
3r � 1

9
· 22r+1 +

2

9
,

rX

i=1

i2 22i�1 =
3r2 � 2r

9
· 22r+1 +

5

27
· 22r+1 � 10

27
.

Proof.

rX

i=1

i22i�1 =
1

2
·

rX

i=1

i4i =
1

2
· 4
9
·
⇥
r4r+1 � (r + 1)4r + 1

⇤
=

2

9
· [3r4r � 4r + 1] ,

rX

i=1

i222i�1 =
1

2
·

rX

i=1

i24i =
1

2
· 4
27

·
⇥
r24r+2 � (2r2 + 2r � 1)4r+1 + (r + 1)24r � 5

⇤

=
2

27
·
⇥
(9r2 � 6r + 5) · 4r � 5

⇤
.

3

K. Pommerening, Bitstream Ciphers 91

Now the mean value of the linear complexity is

EN =
1

2N
·
X

u2FN
2

�(u) =
1

2N
·

NX

l=0

l · µN (l),

2NEN =

bN
2 cX

l=1

l · 22l�1

| {z }
S1

+
NX

l=dN+1
2 e

l · 22(N�l)

| {z }
S2

.

First let N be even. Then

S1 =

N
2X

l=1

l · 22l�1 =
3N � 2

18
· 2N+1 +

2

9
=

N

3
· 2N � 2

9
· 2N +

2

9
,

S2 =
NX

l=N
2 +1

l · 4N�l k=N�l
=

N
2 �1X

k=0

(N � k) · 4k = N ·

N
2 �1X

k=0

4k �

N
2 �1X

k=0

k · 4k

= N · 4
N/2 � 1

3
� 4

9
·

(
N

2
� 1) · 4

N
2 � N

2
· 4

N
2 �1 + 1

�

=
N

3
· 2N � N

3
� 4

9
·

N

2
· 2N � 2N � N

8
· 2N + 1

�

=

✓
N

6
+

4

9

◆
· 2N � N

3
� 4

9
.

Taken together this yields

2NEN =
N

2
· 2N +

2

9
· 2N � N

3
� 2

9
,

proving the first formula of Theorem 3 for N even.
For odd N we have

S1 =

N�1
2X

l=1

l · 22l�1 =
3(N � 1)� 2

18
· 2N +

2

9
=

3N � 5

18
· 2N +

2

9

=
N

6
· 2N � 5

18
· 2N +

2

9
,

K. Pommerening, Bitstream Ciphers 92

S2 =
NX

l=N+1
2

l · 4N�l k=N�l
=

N�1
2X

k=0

(N � k) · 4k = N ·

N�1
2X

k=0

4k �

N�1
2X

k=0

k · 4k

= N · 4
(N+1)/2 � 1

3
� 4

9
·

N � 1

2
· 4

N+1
2 � N + 1

2
· 4

N�1
2 + 1

�

=
N

3
· 2N+1 � N

3
� 4

9
·

N � 1

2
· 2N+1 � N + 1

2
· 2N�1 + 1

�

=
2N

3
· 2N � N

3
� 4N

9
· 2N +

4

9
· 2N +

N

9
· 2N +

1

9
· 2N � 4

9

=

✓
N

3
+

5

9

◆
· 2N � N

3
� 4

9
,

2NEN =
N

2
· 2N +

5

18
· 2N � N

3
� 2

9
,

proving the first formula of Theorem 3 also for odd N .
Now let’s calculate the variance VN . We start with

VN + 2NE2
N =

1

2N
·
X

u2FN
2

�(u)2 =
1

2N
·

NX

l=0

l2 · µN (l),

=

bN
2 cX

l=1

l2 · 22l�1

| {z }
S3

+
NX

l=dN+1
2 e

l2 · 4N�l

| {z }
S4

.

Again we first treat the case of even N . Then the first sum evaluates as

S3 =

N
2X

l=1

l2 · 22l�1 =
3 · N2

4 � 2 · N
2

9
· 2N+1 +

5

27
· 2N+1 � 10

27

=
N2

6
· 2N � 2N

9
· 2N +

10

27
· 2N � 10

27
.

We decompose the second sum:

S4 =
NX

l=N
2 +1

l2 · 4N�l k=N�l
=

N
2 �1X

k=0

(N � k)2 · 4k

= N2 ·

N
2 �1X

k=0

4k

| {z }
S4a

�2N ·

N
2 �1X

k=0

k · 4k

| {z }
S4b

+

N
2 �1X

k=0

k2 · 4k

| {z }
S4c

K. Pommerening, Bitstream Ciphers 93

and separately evaluate the summands:

S4a = N2 · 4
N
2 � 1

3
=

N2

3
· 2N � N2

3
,

S4b = N · 4
9
·

(
N

2
� 1) · 4

N
2 � N

2
· 4

N
2 �1 + 1

�

=
4N

9
·

N

2
· 2N � 2N � N

8
· 2N + 1

�
=

N2

6
· 2N � 4N

9
· 2N +

4N

9
,

S4c =
4

27
·

(
N

2
� 1)2 · 4

N
2 +1 �

✓
2 · (N

2
� 1)2 + 2 · (N

2
� 1)� 1

◆
· 4

N
2

+(
N

2
)2 · 4

N
2 �1 � 5

�

=
4

27
·

2 · (N

2

4
�N + 1) · 2N �N · 2N + 2 · 2N + 2N +

N2

16
· 2N � 5

�

=
1

12
·N2 · 2N � 4

9
·N · 2N +

20

27
· 2N � 20

27
.

We have to subtract

2N · E2
N =

N

2
+

2

9
� N

3 · 2N � 2

9 · 2N

�2
· 2N

=
N2

4
· 2N +

2N

9
· 2N +

4

81
· 2N � N2

3
� 10N

27
� 8

81

+
N2

9 · 2N +
4N

27 · 2N +
4

81 · 2N .

All this fragments together yield

2N · VN =
86

81
· 2N � 14N

27
� 82

81
� N2

9 · 2N � 4N

27 · 2N � 4

81 · 2N ,

proving the second formula of Theorem 3 for even N .
The corresponding calculation for odd N is:

S3 =

N�1
2X

l=1

l2 · 22l�1 =
N2

12
· 2N � 5N

18
· 2N +

41

108
· 2N � 10

27
,

S4a = N2 ·

N�1
2X

k=0

4k =
2N2

3
· 2N � N2

3
,

S4b = N ·

N�1
2X

k=0

k · 4k =
N2

3
· 2N � 5N

9
· 2N +

4N

9
,

S4c =

N�1
2X

k=0

k2 · 4k =
N2

6
· 2N � 5N

9
· 2N +

41

54
· 2N � 20

27
,

K. Pommerening, Bitstream Ciphers 94

2N · E2
N =

N

2
+

5

18
� N

3 · 2N � 2

9 · 2N

�2
· 2N

=
N2

4
· 2N +

5N

18
· 2N +

25

324
· 2N � N2

3
� 11N

27
� 10

81

+
N2

9 · 2N +
4N

27 · 2N +
4

81 · 2N .

Putting the fragments together we get

2N · VN = S3 + S4a � 2 · S4b + S4c � 2N · E2
N

=
86

81
· 2N � 13N

27
� 80

81
� 9N2 + 12N + 4

81 · 2N .

This completes the proof of Theorem 3.

K. Pommerening, Bitstream Ciphers 95

3.7 Linear Complexity and Turing Complexity

A universal Turing machine is able to simulate every other Turing

machine by a suitable program. Let M be one, and let u 2 Fn
2 be a bit

sequence of length n. Then the Turing-Kolmogorov-Chaitin (TKC)

complexity �(u) is the length of the shortest program of M that outputs
u. There is always one such program of length n: Simply take u as input
sequence and output it unchanged. (Informally: Move the input tape forward
by n steps and stop.)

Remark The function �: F⇤
2 �! N itself is not computable. This means

there is no Turing machine that computes �. Thus the TKC com-
plexity is of low practical value as a measure of complexity. However
in the recent years it gained some momentum in a more precise form
by the work of Vitanyi and others, see for example:

Ming Li, Paul Vitanyi: An Introduction to Kolmogorov Com-
plexity and Its Applications. Springer, New York 1993, 1997.

A central result of the theory is:

1

2n
·#{u 2 Fn

2 | �(u) > n · (1� ")} > 1� 1

2n"�1
.

This result says that almost all sequences have a TKC complexity near the
maximum value, there is no significantly shorter description of a sequence
than to simply write it down. A common interpretation of this result is:
“Almost all sequences are random.” This corresponds quite well with the
intuitive idea of randomness. Nobody would consider a sequence with a
short description such as “alternate one million times between 0 and 1” as
random.

Thomas Beth, Zong-Duo Dai: On the complexity of pseudo-
random sequences – or: If you can describe a sequence it can’t
be random. Eurocrypt 89, 533–543.

This paper contains some small errors that are corrected in [9].
Also “linear complexity” � measures complexity, using a quite special

machine model: the LFSR. On first sight it su↵ers from severe deficits. The
sequence “999999 times 0, then a single 1” has a very low TKC complexity—
corresponding to a very low intuitive randomness—, but the linear complex-
ity is 1 million.

Of course we could also try to use nonlinear FSRs for measuring com-
plexity, see for instance the papers:

• Agnes Hui Chan, Richard A. Games: On the quadratic span of peri-
odic sequences. Crypto 89, 82–89.

K. Pommerening, Bitstream Ciphers 96

• Cees J. A. Jansen, Dick E. Boekee: The shortest feedback shift reg-
ister that can generate a given sequence. Crypto 89, 90–96.

and Appendix B. However, as we saw, a short description by a nonlinear
FSR also implies a small linear complexity.

In any case linear complexity has the advantage of easy explicite com-
putability, and “in general” it characterizes the randomness of a bit sequence
very well. This vague statement admits a surprisingly precise wording (stated
here without proof). To make a fair comparision note that the description
of a sequence by an LFSR needs 2⇥ � bits: the taps of the register and the
starting value. Therefore we should compare � and 2 · �:

Proposition 12 (Beth/Dai)

1

2n
·#{u 2 Fn

2 | (1� ")2�(u) �(u)} � 1� 8

3 · 2
n"
2�"

,

1

2n
·#{u 2 Fn

2 | (1� ")�(u) 2�(u)} � 1� 1

3
· 1

2n"�(1�")(1+logn)+1
� 1

3
· 1

2n
.

We interpret this as: “For almost all bit sequences the linear complexity and
the TKC complexity coincide with only a negligeable discrepancy (up to the
obvious factor 2).”

This result confirms that linear complexity—despite its simplicity—is
a useful measure of complexity, and that in general bit sequences of high
linear complexity have no short description in other machine models. Thus
they are cryptographically useful. Every e�cient prediction method—in the
sense of cryptanalysis of bitstream ciphers—would provide a short descrip-
tion in the sense of TKC complexity. And conversely: If a sequence has a
short description, then we even can generate it by a short LFSR. Thus we
may summarize: In general a bit sequence of high linear complexity is not
e�ciently predictable.

Note that these results

• are “asymptotic” in character. For the “bounded” world we live in they
only yield qualitative statements—a standard phenomen for results on
cryptographic security.

• concern probabilities only. There might be 2r ⌧ 2n sequences of small
TKC complexity that however have high linear complexity—relatively
very few, but absolutely quite a lot! In Chapter 4 we’ll construct such
sequences, dependent on secret parameters, and show (up to one of
the usual hardness assumptions for mathematical problems) that they
don’t allow an e�cient prediction algorithm, in particular not by a
“short” LFSR.

K. Pommerening, Bitstream Ciphers 97

3.8 Approaches to Nonlinearity for Feedback Shift
Registers

LFSRs are popular—in particular among electrical engineers and military—
for several reasons:

• very easy implementation,

• extreme e�ciency in hardware,

• good qualification as random generators for statistical applications and
simulations,

• unproblematic operation in parallel even in large quantities.

But unfortunately from a cryptological view they are completely insecure
if used naively. To capitalize their positive properties while escaping their
cryptological weakness there are several approaches.

Approach 1, Nonlinear Feedback

Nonlinear feedback follows the scheme from Figure 1.7 with a nonlinear
Boolean function f . There is a general proof that in realistic use cases
NLFSRs are cryptographically useless if used in the direct naive way [6].
We won’t pursue this approach here.

Approach 2, Nonlinear Output Filter

The nonlinear ouput filter (nonlinear feedforward) realizes the scheme from
Figure 3.7. The shift register itself is linear, the Boolean function f , nonlin-
ear.

The nonlinear ouput filter is a special case of a nonlinear combiner.

Approach 3, Nonlinear Combiner

The nonlinear combiner uses a “battery” of n LFSRs—preferably of di↵erent
lengths—operated in parallel. The output sequences of the LFSRs serve as
input of a Boolean function f : Fn

2 �! F2, see Figure 3.8. (Sometimes also
called “nonlinear feedforward.”) We’ll see in Section 3.9 how to cryptanalyze
this random generator.

Approach 4, Output Selection/Decimation/Clocking

There are di↵erent ways of controlling a battery of n parallel LFSRs by
another LFSR:

K. Pommerening, Bitstream Ciphers 98

��
�⌧

f

.-

6

�
�
�
�
�
��

⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠:
- -

Figure 3.7: Nonlinear ouput filter for an LFSR

.-

.-

...
...

...
...

-

-

�

⇢

⇠

⇡

-f

Figure 3.8: Nonlinear combiner

K. Pommerening, Bitstream Ciphers 99

• Output selection takes the current output bit of exactly one of the
LFSRs from the “battery”, depending on the state of the auxiliary
register, and outputs it as the next pseudorandom bit. More generally
we could choose “r from n”.

• For decimation one usually takes n = 1, and outputs the current bit
of the one battery register only if the auxiliary register is in a certain
state, for example its own current output is 1. Of course this kind of
decimation applies to arbitrary bit sequences in an analogous way.

• For clocking we look at the state of the auxiliary register and depend-
ing on it decide which of the battery registers to step in the current
cycle (and by how many positions), leaving the other registers in their
current states (this mimics the control logic of rotor machines in clas-
sical cryptography).

These methods turn out to be special cases of nonlinear combiners if properly
rewritten. Thus approach 3 represents the most important method of making
the best of LFSRs.

The encryption standard A5/1 for mobile communications uses three
LFSRs of lengths 19, 22 und 23, each with maximum possible period, and
slightly di↵erently clocked. It linearly (by simple binary addition) combines
the three output streams. The—even weaker—algorithm A5/2 controls the
clocking by an auxiliary register. Both variants can be broken on a standard
PC in real-time.

The Bluetooth encryption standard E0 uses four LFSRs and combines
them in a nonlinear way. This method is somewhat stronger than A5, but
also too weak for real security [7].

Example: The Geffe generator

The Geffe generator provides a simple example of output selection. Its
description is in Figure 3.9. The output is x, if z = 0, and y, if z = 1.
Expressed by a formula:

u =

(
x, if z = 0,

y, if z = 1

= (1� z)x+ zy = x+ zx+ zy.

This formula shows how to interpret the Geffe generator as a nonlinear
combiner with a Boolean function f: F3

2 �! F2 of degree 2. For later use we
implement f in Sage sample 3.2.

For a concrete example we first choose three LFSRs of lengths 15, 16,
17, whose periods are 215 � 1 = 32767, 216 � 1 = 65535, and 217 � 1 =
131071. These are pairwise coprime. Combining their outputs (in each step)

K. Pommerening, Bitstream Ciphers 100

.-

.-

.-

z

?
-x

-y

�

⇢

⇠

⇡
�

�
�

-

Figure 3.9: Geffe generator

Sage Example 3.2 The Ge↵e function

sage: geff = BoolF(str2bbl("00011100"),method="ANF")

sage: geff.printTT()

Value at 000 is 0

Value at 001 is 0

Value at 010 is 0

Value at 011 is 1

Value at 100 is 1

Value at 101 is 0

Value at 110 is 1

Value at 111 is 1

as bitblocks of length 3 yields a sequence with a period that has an impressive
length of 281459944554495, about 300 ⇥ 1012 (300 European billions, for
Americans this are 300 trillions).

Register 1 recursive formula un = un�1 + un�15, taps 100000000000001,
initial state 011010110001001.

Register 2 recursive formula un = un�2 + un�3 + un�5 + un�16, taps
0110100000000001, initial state 0110101100010011.

Register 3 recursive formula un = un�3+un�17, taps 00100000000000001,
initial state 01101011000100111.

K. Pommerening, Bitstream Ciphers 101

Sage sample 3.3 defines the three LFSRs. We let each of the LFSRs generate
a sequence of length 100, see Sage sample 3.4.

Sage Example 3.3 Three LFSRs

sage: reg15 = LFSR([1,0,0,0,0,0,0,0,0,0,0,0,0,0,1])

sage: reg15.setState([0,1,1,0,1,0,1,1,0,0,0,1,0,0,1])

sage: print(reg15)

Length: 15 | Taps: 100000000000001 | State: 011010110001001

sage: reg16 = LFSR([0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,1])

sage: reg16.setState([0,1,1,0,1,0,1,1,0,0,0,1,0,0,1,1])

sage: print(reg16)

Length: 16 | Taps: 0110100000000001 | State: 0110101100010011

sage: reg17 = LFSR([0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1])

sage: reg17.setState([0,1,1,0,1,0,1,1,0,0,0,1,0,0,1,1,1])

sage: print(reg17)

Length: 17 | Taps: 00100000000000001 | State: 01101011000100111

Sage Example 3.4 Three LFSR sequences

sage: nofBits = 100

sage: outlist15 = reg15.nextBits(nofBits)

sage: print(outlist15)

[1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0,

0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1,

0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0,

1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1,

0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1]

sage: outlist16 = reg16.nextBits(nofBits)

sage: print(outlist16)

[1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1,

0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1,

1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0,

1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1,

1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1]

sage: outlist17 = reg17.nextBits(nofBits)

sage: print(outlist17)

[1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0,

1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,

0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0]

K. Pommerening, Bitstream Ciphers 102

The three sequences of length 100 are:

10010 00110 10110 11100 00100 11011 01000 00111 01101 10000

00101 10110 11111 11001 00100 10101 01110 00111 00110 01011

11001 00011 01011 00011 00111 10000 00001 11011 10001 11000

00100 01110 11110 10010 01111 00101 10111 10010 11100 10001

11100 10001 10101 10001 00000 01100 11111 10110 11000 00111

00001 10000 00001 11111 10010 01001 01010 10110 01011 00110

In Sage sample 3.5 the Geffe function combines them to the output se-
quence

11010 00111 00011 01101 00100 10011 00001 10011 10101 10000

00100 00110 11110 10010 00110 10101 00110 10011 01100 01001

Sage Example 3.5 The combined sequence

sage: outlist = []

sage: for i in range(0,nofBits):

....: x = [outlist15[i],outlist16[i],outlist17[i]]

....: outlist.append(geff.valueAt(x))

....:

sage: print(outlist)

[1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1,

0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1,

1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0,

1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1,

0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1]

K. Pommerening, Bitstream Ciphers 103

3.9 Correlation Attacks—the Achilles Heels of
Combiners

Let f : Fn
2 �! F2 be the combining function of a nonlinear combiner. The

number
Kf := #{x = (x1, . . . , xn) 2 Fn

2 | f(x) = x1}

counts the coincidences of the value of the function with its first argument.
If it is > 2n�1, then the probability of a coincidence,

p =
1

2n
·Kf >

1

2
,

is above average, and the combined output sequence “correlates” with the
output of the first LFSR more then expected by random. If p < 1

2 , then the
correlation deviates from the expected value in the other direction.

The cryptanalyst can exploit this e↵ect in an attack with known plain-
text. We suppose that she knows the “hardware”, that is the taps of the
registers, and also the combining function f . She seeks the initial states of
all the LFSRs. We assume she knows the bits k0, . . . , kr�1 of the key stream.
For each of the 2l1 initial states of the first LFSR she generates the sequence
u0, . . . , ur�1, and counts the coincidences. The expected values are

1

r
·#{i | ui = ki} ⇡

(
p for the correct initial state of LFSR 1,
1
2 otherwise.

If r is large enough, she can determine the true initial state of LFSR 1 (with
high probability) for a cost of ⇠ 2l1 . She continues with the other registers,
and finally identifies the complete key with a cost of ⇠ 2l1 + · · ·+ 2ln . Note
that the cost is exponential, but significantly lower than the cost ⇠ 2l1 · · · 2ln
of the naive exhaustion of the key space.

In the language of linear cryptanalysis from Part II she made use of the
linear relation

f(x1, . . . , xn)
p
⇡ x1

for f . Clearly she could use any linear relation as well to reduce the com-
plexity of key search. (A more in-depth analysis of the situation leads to the
notion of correlation immunity that is related with the linear potential.)

Correlations from the Geffe generator

From the truth table 3.2 we get the correlations produced by the Geffe

generator. Thus the probabilities of coincidences are

p =

8
><

>:

3
4 for register 1 (x),
3
4 for register 2 (y),
1
2 for register 3 (z = control bit).

K. Pommerening, Bitstream Ciphers 104

x 0 0 0 0 1 1 1 1
y 0 1 0 1 0 1 0 1
z 0 0 1 1 0 0 1 1

f(x, y, z) 0 0 0 1 1 1 0 1

Table 3.2: Truth table of the Geffe function

linear form 0 z y y + z x x+ z x+ y x+ y + z
representation 000 001 010 011 100 101 110 111
potential � 0 0 1/4 1/4 1/4 1/4 0 0
probability p 1/2 1/2 3/4 1/4 3/4 3/4 1/2 1/2

Table 3.3: Coincidence probabilities of the Geffe function

A correlation attack easily detects the initial states of registers 1 and 2—the
battery registers—given only a short piece of an output sequence. Afterwards
exhaustion finds the initial state of register 3, the control register.

We exploit this weakness of the Geffe generator for an attack in Sage
sample 3.6 that continues Sage sample 3.2. Since we defined the linear pro-
file for objects of the class BoolMap only, we first of all have to interpret the
function geff as a Boolean map, that is a one-element list of Boolean func-
tions. Then the linear profile is represented by a matrix of 2 columns and 8
rows. The first column [64, 0, 0, 0, 0, 0, 0, 0] shows the coincidences
with the linear form 0 in the range. So it contains no useful information, ex-
cept the denominator 64 that applies to all entries. The second row [0, 0,

16, 16, 16, 16, 0, 0] yields the list of coincidence probabilities p (after
dividing it by 64) in Table 3.3, using the formula

p =
1

2
· (±

p
�+ 1).

If � = 0, then p = 1/2. If � = 1/4, then p = 1/4 or 3/4. For deciding between
these two values for p we use Table 3.2.

Sage Example 3.6 Linear profile of the Ge↵e function

sage: g = BoolMap([geff])

sage: linProf = g.linProf(); linProf

[[64,0], [0,0], [0,16], [0,16], [0,16], [0,16], [0,0], [0,0]]

In Sage sample 3.7 we apply this finding to the 100 element sequence from
Sage sample 3.5. The function coinc from the Sage module Bitblock.sage
in Appendix E.1 of Part II counts the coincidences. For the first register we

K. Pommerening, Bitstream Ciphers 105

find 73 coincidences, for the second one 76, for the third one only 41. This
confirms the values 75, 75, 50 predicted by our theory.

Sage Example 3.7 Coincidences for the Ge↵e generator

sage: coinc(outlist15,outlist)

73

sage: coinc(outlist16,outlist)

76

sage: coinc(outlist17,outlist)

41

Cryptanalysis of the Ge↵e Generator

These results promise an e↵ortless analysis of our sample sequence. For an
assessment of the success probability we consider a bitblock b 2 Fr

2 and first
ask how large is the probability that a random bitblock u 2 Fr

2 coincides with
b at exactly t positions. For an answer we have to look at the symmetric
binomial distribution (where p = 1

2 is the probability of coincidence at a
single position): The probability of exactly t coincidences is

Br, 12
(t) =

�r
t

�

2r
.

Hence the cumulated probability of up to T coincidences is

TX

t=0

Br, 12
(t) =

1

2r
·

TX

t=0

✓
r

t

◆
.

If r is not too large, then we may explicitly calculate this value for a given
bound T . If on the other hand r is not too small, then we approximate
the value using the normal distribution. The mean value of the number of
coincidences is r/2, the variance, r/4, and the standard deviation,

p
r/2.

In any case for r = 100 the probability of finding at most (say) 65 co-
incidences is 0.999, the probability of surpassing this number is 1‰. For
the initial state of register 1 we have to try 215 = 32786 possibilities (gener-
ously including the zero state 0 2 F15

2 into the count). So we expect about
33 oversteppings with at least 66 coincidences. One of these should occur
for the true initial state of register 1 that we expect to produce about 75
coincidences. Maybe it even produces the maximum number of coincidences.

Sage sample 3.8 shows that this really happens. However the max-
imum number of coincidences, 73, occurs twice in the histogram. The
first occurrence happens at index 13705, corresponding to the initial state
011010110001001, the correct solution. The second occurrence, at index

K. Pommerening, Bitstream Ciphers 106

Sage Example 3.8 Analysis of the Ge↵e generator—register 1

sage: clist = []

sage: histogr = [0] * (nofBits + 1)

sage: for i in range(0,2**15):

....: start = int2bbl(i,15)

....: reg15.setState(start)

....: testlist = reg15.nextBits(nofBits)

....: c = coinc(outlist,testlist)

....: histogr[c] += 1

....: clist.append(c)

....:

sage: print(histogr)

[0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 12, 12, 37, 78, 116, 216,

329, 472, 722, 1003, 1369, 1746, 1976, 2266, 2472, 2531, 2600,

2483, 2355, 2149, 1836, 1574, 1218, 928, 726, 521, 343, 228, 164,

102, 60, 47, 36, 13, 8, 7, 4, 2, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

sage: mm = max(clist)

sage: ix = clist.index(mm)

sage: block = int2bbl(ix,15)

sage: print("Maximum =", mm, "at index", ix, ", start value", block)

Maximum = 73 at index 13705 , start value\

[0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1]

Sage Example 3.9 Analysis of the Ge↵e generator—continued

sage: ix = clist.index(mm,13706); ix

31115

sage: print(int2bbl(ix,15))

[1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1]

31115, see Sage sample 3.9, yields the false solution 111100110001011 that
eventually leads to a contradiction.

Sage sample 3.10 shows the analogous analysis of register 2. Here the
maximum of coincidences, 76, is unique, occurs at index 27411 corresponding
to the initial state 0110101100010011, and provides the correct solution.

To complete the analysis we must yet determine the initial state of reg-
ister 3, the control register. The obvious idea is to exhaust the 217 di↵erent
possibilities. There is a shortcut since we already know 51 of the first 100
bits of the control register: At a position where the values of registers 1 and

K. Pommerening, Bitstream Ciphers 107

Sage Example 3.10 Analysis of the Ge↵e generator—register 2

sage: clist = []

sage: histogr = [0] * (nofBits + 1)

sage: for i in range(0,2**16):

....: start = int2bbl(i,16)

....: reg16.setState(start)

....: testlist = reg16.nextBits(nofBits)

....: c = coinc(outlist,testlist)

....: histogr[c] += 1

....: clist.append(c)

....:

sage: print(histogr)

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 3, 4, 8, 17, 25, 51, 92, 171,

309, 477, 750, 1014, 1423, 1977, 2578, 3174, 3721, 4452, 4821,

5061, 5215, 5074, 4882, 4344, 3797, 3228, 2602, 1974, 1419,

1054, 669, 434, 306, 174, 99, 62, 38, 19, 10, 3, 0, 1, 0, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0]

sage: mm = max(clist)

sage: ix = clist.index(mm)

sage: block = int2bbl(ix,16)

sage: print("Maximum =", mm, "at index", ix, ", start value", block)

Maximum = 76 at index 27411 , start value\

[0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1]

2 di↵er, the control bit is necessarily 0 if the final output coincides with reg-
ister 1, and 1 otherwise. Only at positions where registers 1 and 2 coincide
the corresponding bit of register 3 is undetermined.

register 1: 10010001101011011100001001101101000001110110110000

register 2: 11001000110101100011001111000000001110111000111000

register 3: -1-00--0-1101-110001---00-1-00-1--1101--110---0---

bitsequence: 11010001110001101101001001001100001100111010110000

... 00101101101111111001001001010101110001110011001011

... 00100011101111010010011110010110111100101110010001

... ----110-------1-1-11-0-100----01--01-1-001-1-00-1-

... 00100001101111010010001101010100110100110110001001

In particular we already know 11 of the 17 initial bits, and are left with only
26 = 64 possibilities to try.

K. Pommerening, Bitstream Ciphers 108

u17 = u14 + u0 0 = 1 + u0 u0 = 1
u19 = u16 + u2 1 = 0 + u2 u2 = 1
u20 = u17 + u3 u20 = 0 + 0 u20 = 0
u22 = u19 + u5 u22 = u5 + 1 u5 = u22 + 1
u23 = u20 + u6 0 = u20 + u6 u6 = u20 u6 = 0
u25 = u22 + u8 u25 = u22 + u8 u8 = u22 + u25 u8 = u22
u27 = u24 + u10 u27 = 0 + 1 u27 = 1
u28 = u25 + u11 0 = u25 + 0 u25 = 0
u30 = u27 + u13 u30 = u27 + u13 u13 = u27 + u30 u13 = u30 + 1
u33 = u30 + u16 u33 = u30 + 0 u30 = u33 u30 = 1
u36 = u33 + u19 0 = u33 + 1 u33 = 1
u39 = u36 + u22 u39 = 0 + u22 u22 = u39
u42 = u39 + u25 0 = u39 + u25 u39 = u25 u39 = 0

Table 3.4: Determination of the control register’s initial state

But even this may be further simplified, since the known and the un-
known bits obey linear relations of the type un = un�3+un�17. The unknown
bits of the initial state are u0, u2, u5, u6, u8, u13. The solution follows the
columns of Table 3.4, that immediately give

u0 = 1, u2 = 1, u6 = 0.

The remaining solutions are

u8 = u22 = u39 = 0, u5 = u22 + 1 = u8 + 1 = 1, u13 = u30 + 1 = 0.

Hence the initial state of the control register is 01101011000100111, and we
know this is the correct solution. We don’t need to bother with the second
possible solution for register 1 since we already found a constellation that
correctly reproduces the sequence.

K. Pommerening, Bitstream Ciphers 109

3.10 Design Criteria for Nonlinear Combiners

From the forgoing discussion we derive design criteria for nonlinear combin-
ers:

• The battery registers should be as long as possible.

• The combining function f should have a low linear potential.

How long should the battery registers be? There are some algorithms for
“fast” correlation attacks using the Walsh transformation, in particular
against sparse linear feedback functions (that use only a small number of
taps) [4]. These don’t reduce the complexity class of the attack (“exponential
in the length of the shortest register”) but reduce the cost by a significant
factor. So they are able to attack registers with up to 100 coe�cients 1 in
the feedback function. As a consequence

• The single LFSRs should have a length of at least 200 bits, and use
about 100 taps each.

To assess the number n of LFSRs we bear in mind that the combining
function should be “correlation immune”, in particular have a low linear
potential. A well-chosen Boolean function of 16 variables should su�ce, but
there are no known recommendations in the literature.

Rueppel found an elegant way out to make the correlation attack break
down: Use a “time-dependent” combining function, that is a family (ft)t2N.
The bit ut of the key stream is calculated by the function ft. We won’t
analyze this approach here.

Observing that the correlation attack needs knowledge of the taps, the
security could be somewhat better if the taps are secret. Then the attacker
has to perform additional exhaustions that multiply the complexity by fac-
tors such as 2l1 for the first LFSR alone. This scenario allows choosing LFSRs
of somewhat smaller lengths. But bear in mind that for a hardware imple-
mentation the taps are parts of the algorithm, not of the key, that is they
are public parameters in the sense of Figure 2.1.

E�ciency

LFSRs and nonlinear combiners allow e�cient realizations by special hard-
ware that produces one bit per clock cycle. This rate can be enlarged by
parallelization. From this point of view estimating the cost of execution on
a usual PC processor is somewhat inadequate. Splitting each of the � 200
bit registers into 4 parts of about 64 bits shifting a single register requires at
least 4 clock cycles, summing up to 64 clock cycles for 16 registers. Add some
clock cycles for the combining function. Thus one single bit would take about
100 clock cycles. A 2-GHz processor, even with optimized implementation,
would produce at most 2 · 109/100 = 20 million bits per second.

K. Pommerening, Bitstream Ciphers 110

As a summary we note:

Using LFSRs and nonlinear combining functions we can build use-
ful and fast random generators, especially in hardware.

Unfortunately there is no satisfying theory for the cryptologic security
of this type of random generators, even less a mathematical proof. Security
is assessed by plausible criteria that—as for bitblock ciphers—are related to
the nonlinearity of Boolean functions.

