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The theory of this section goes back to Claude Shannon[15] (with later
simplifications by Hellman[8]). In his paper Shannon developed the first
general mathematical model of cryptology as well as the analysis of cryp-
tosystems by information theoretical methods. The basic question this the-
ory asks is:

How much information about the plaintext is preserved in the
ciphertext?

(no matter how difficult or expensive the extraction of this information is.)
If this information doesn’t suffice to determine the plaintext, then the cipher
is secure.

Shannon’s ideas are based on the information theory that he had de-
veloped before [14].

The practical value of Shannon’s theory is limited. But besides it there
are almost no sufficient criteria for the security of cryptographic methods
that are mathematically proved. In contrast there are lots of necessary cri-
teria derived from cryptanalytic procedures. Lacking better ideas one tries
to optimize the cryptographic procedures for these necessary conditions. We
saw and shall see many instances of this in these lecture notes.
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1 A Priori and A Posteriori Probabilities

Model Scenario

Consider

• a finite set M0 ⊆M of possible plaintexts—for example all plaintexts
of length r or of length ≤ r,

• a finite set K of keys,

• a cipher F = (fk)k∈K with fk : M −→ Σ∗.

The restriction to a finite setM0 allows us to handle probabilities in the naive
way. It is no real restriction since plaintexts of lengths > 10100 are extremely
unlikely in this universe that has at most 1080 elementary particles.

Motivating Example

For English plaintexts of length 5 we potentially know exact a priori prob-
abilities, say from a lot of countings. A small excerpt from the list is

Plaintext Probability

hello p > 0
fruit q > 0
xykph 0
. . . . . .

Now assume we see a monoalphabetically encrypted English text XTJJA.
Without knowing the key—that is in a situation where all keys have the
same probability—and without further context information we nevertheless
assign to the single plaintexts different “a posteriori probabilities”:

Plaintext Probability

hello p1 >> p
fruit 0
xykph 0
. . . . . .

Thus knowledge of the ciphertext alone (and knowledge of the encryption
method) changed our information on the plaintext.

A “Bayesian” approach gives a general model of this observation.

Model

The probability of plaintexts is given as a function

P : M0 −→ [0, 1] where P (a) > 0 for all a ∈M0

and
∑
a∈M0

P (a) = 1.
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(This is the a priori probability of plaintexts.)

The probability of keys is likewise given as a function

P : K −→ [0, 1] such that
∑
k∈K

P (k) = 1.

(By abuse of notation denoted by the same letter P .) In general we
assume a uniform distribution P (k) = 1/#K for all k ∈ K.

The probability of ciphertexts derives from the probabilities of plain-
texts and keys, implicitly assumed as independently chosen:

P : Σ∗ −→ [0, 1], P (c) :=
∑
a∈M0

∑
k∈Kac

P (a) · P (k),

where Kac := {k ∈ K | fk(a) = c} is the set of all keys that transform
a to c.

Remark 1 Only finitely many c ∈ Σ∗ have P (c) 6= 0. These form the set

C0 := {c ∈ Σ∗ | P (c) > 0}

of “possible ciphertexts”.

Remark 2 We have∑
c∈Σ∗

P (c) =
∑
c∈Σ∗

∑
a∈M0

∑
k∈Kac

P (a) · P (k)

=
∑
a∈M0

∑
k∈K

P (a) · P (k)

=
∑
a∈M0

P (a) ·
∑
k∈K

P (k)

= 1.

The conditional probability for a ciphertext to stem from a given
plaintext a ∈M0 is modeled by the function

P (•|a) : Σ∗ −→ [0, 1], P (c|a) :=
∑
k∈Kac

P (k).

Remark 3
∑

c∈Σ∗ P (c|a) =
∑

k∈K P (k) = 1.

Remark 4 P (c) =
∑

a∈M0
P (a) · P (c|a).
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A Posteriori Probabilities of Plaintexts

The cryptanalyst is interested in the converse, the conditional probability
P (a|c) of a plaintext a ∈M0 if the ciphertext c ∈ Σ∗ is given.

First we describe the probability of the simultaneous occurrence of a and
c as

P : M0 × Σ∗ −→ [0, 1], P (a, c) := P (a) · P (c|a).

Remark 5 Then ∑
a∈M0

P (a, c) =
∑
a∈M0

P (a) · P (c|a) = P (c).

The conditional probability of a plaintext is given by a function
P (•|c) with P (a, c) = P (c) · P (a|c) by the Bayesian formula

P (a|c) :=

{
P (a)·P (c|a)

P (c) if P (c) 6= 0,

0 if P (c) = 0.

Remark 6
∑

c∈Σ∗ P (c)·P (a|c) =
∑

c∈Σ∗ P (a)·P (c|a) = P (a) by Remark 3.
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2 Perfect Security

Definition 1 The cipher F is called perfectly secure on M0 (the finite
set of all possible plaintexts) if P (•, c) = P on M0 for all ciphertexts
c ∈ Σ∗ of positive probability P (c) > 0.

Interpretation: This condition assures that the a posteriori probability
P (a|c) of each plaintext a ∈M0 is the same as the a priori probability
P (a). Or in other words, the cryptanalyst doesn’t get any additional
information on the plaintext by knowing the ciphertext.

Lemma 1 #M0 ≤ #C0.

Proof. Let l ∈ K be a fixed key with P (l) > 0. For every ciphertext c ∈
fl(M0), say c = fl(b), we then have

P (c) =
∑
a∈M0

P (a) ·
∑
k∈Kac

P (k) ≥ P (b) · P (l) > 0.

Hence c ∈ C0. From this follows that fl(M0) ⊆ C0. Since fl is injective also
#M0 ≤ #C0. 3

Lemma 2 If F is perfectly secure, then Kac 6= ∅ for all a ∈ M0 and all
c ∈ C0.

Proof. Assume Kac = ∅. Then

P (c|a) =
∑
k∈Kac

P (k) = 0.

Hence P (a|c) = 0 6= P (a), contradiction. 3

Therefore each possible plaintext can be transformed into each possible
ciphertext. The next lemma says that the number of keys must be very large.

Lemma 3 If F is perfectly secure, then #K ≥ #C0.

Proof. Since
∑
P (a) = 1, we must have M0 6= ∅. Let a ∈ M0. Assume

#K < #C0. Then there exists a c ∈ C0 with fk(a) 6= c for every key k ∈ K,
whence Kac = ∅, contradiction. 3

Theorem 1 [Shannon] Let F be perfectly secure. Then

#K ≥ #M0.

That is the number of keys is at least as large as the number of possible
plaintexts.
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Proof. This follows immediately from Lemmas 1 and 3. 3

Theorem 2 [Shannon] Let F be a cipher with

P (k) =
1

#K
for all k ∈ K

(that is all keys have the same probability) and

#Kac = s for all a ∈M0 and all c ∈ C0.

with a fixed s ≥ 1. Then F is perfectly secure. Furthermore #K = s ·#C0.

Proof. Let c ∈ C0 be a possible cipherext. Then for any possible plaintext
a ∈M0:

P (c|a) =
∑
k∈Kac

1

#K
=

#Kac

#K
=

s

#K
,

P (c) =
∑
a∈M0

P (a) · P (c|a) =
s

#K
·
∑
a∈M0

P (a) =
s

#K
= P (c|a),

P (a|c) =
P (c|a)

P (c)
· P (a) = P (a).

Therefore F is perfectly secure. The second statement follows from

K =
.⋃

c∈C0

Kac

for all a ∈M0. 3
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3 Examples of Perfect Security

Trivial Examples

Example 0: #M0 = 1. This example is cryptological nonsense since the
cryptanalyst knows the only possible plaintext a priori. Hence she
cannot gain any additional information on the plaintext by knowing
the ciphertext.

Let M0 = {a}. For all c ∈ C0 trivially P (a|c) = 1 = P (a). Hence F is
perfectly secure, no matter how it is defined.

Example 1: #M0 = 2. The smallest nontrivial example involves two possi-
ble plaintexts. Without restriction we may assume that M0 = {0, 1} =
C0 = K. Let f0 be the identity map on {0, 1}, and f1, the transposi-
tion of 0 and 1. Furthermore let the two keys 0 and 1 have the same
probability: P (0) = P (1) = 1

2 .

Then K00 = K11 = {0}, K01 = K10 = {1}. Theorem 2 tells us that F
is perfectly secure.

The Shift Cipher

We provide M0 = K = C0 with a group structure, and let F : M0×K −→ C0

be the group composition, hence fk(a) = a ∗ k. The sets

Kac = {k ∈ K | a ∗ k = c} = {a−1 ∗ c}

each consist of one element only. We let P (k) = 1
#K for all keys k ∈ K.

Then F is perfectly secure.
The Examples 0 and 1 are the special cases of the one- or two-element

group. Also Examples 2 and 3 will be special cases.

Example 2: The Caesar Cipher. This is the shift cipher on the cyclic
group Σ = Z/nZ of order n.

Hence the Caesar cipher is perfecly secure, if we encrypt messages of
length 1 only and randomly choose an independent new key for each
message.

Example 3: The One-Time Pad. This is the collection of the shift ciphers
on the groups Σr = M0 where Σ = Z/nZ. Messages are texts of length
r, and keys are independently and randomly chosen letter sequences of
the same length r.

Because one has to choose a new key for each message this cipher
has its name One-Time Pad. Imagine a tear-off calendar where each
sheet contains a random letter. After use it is torn off and destroyed.

The One-Time Pad is the prototype of a perfect cipher.
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The special case Σ = {0, 1} gives the binary Vernam/Mauborgne
cipher, that is the bitstram encryption with a completely random se-
quence of key bits.

Counterexample: The Monoalphabetic Substitution. Set M0 = Σr and
K = S(Σ). For r = 5 we saw already that

P (fruit|XTJJA) = 0 < q = P (fruit).

Therefore the monoalphabetic substitution is not perfect (for r ≥ 2
and n ≥ 2). For r = 1 it is perfect by Theorem 2 (with s = (n− 1)!).
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4 Density and Redundancy of a Language

Shannon’s theory provides an idea of an unbreakable cipher via the concept
of perfection. Moreover it develops the concept of “unity distance” as a
measure of the difference to perfection. This concept takes up the observation
that the longer a ciphertext, the easier is its unique decryption.

We don’t want to develop this theory in a mathematically precise way,
but only give a rough impression. For a mathematiclly more ambitious ap-
proach see [11].

Unique Solution of the Shift Cipher

Let the ciphertext FDHVDU be the beginning of a message that was encrypted
using a Caesar cipher. We solved it by exhaustion applying all possible 26
keys in order:

Key Plaintext t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0 fdhvdu +
1 ecguct + +
2 dbftbs +
3 caesar + + + + + +
4 bzdrzq +
5 aycqyp + +
6 zxbpxo +
7 ywaown ?
8 xvznvm ?
9 wuymul + +
10 vtxltk +
11 uswksj + + ?
12 trvjri + +
13 squiqh + + + +
14 rpthpg +
15 qosgof +
16 pnrfne + +
17 omqemd + +
18 nlpdlc +
19 mkockb +
20 ljnbja +
21 kimaiz + + + ? ?
22 jhlzhy +
23 igkygx + +
24 hfjxfw +
25 geiwev + + + ?

The flags in this table stand for:
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• +: The assumed plaintext makes sense including the t-th letter.

• ?: The assumed plaintext could make sense including the t-th letter
but with low probability.

Given the first five letters only one of the texts seems to make sense. We
would call this value 5 the “unicity distance” of the cipher.

Mathematical Model

Let us start again with an n-letter alphabet Σ. The “information content”
of a letter is log2 n, for we need dlog2 ne bits for a binary encoding of all of
Σ.

Example For n = 26 we have log2 n ≈ 4.7. Thus we need 5 bits for encoding
all letters differently. One such encoding is the teleprinter code.

Now let M ⊆ Σ∗ be a language. Then Mr = M ∩ Σr is the set of
“meaningful” texts of length r, and Σr − Mr is the set of “meaningless”
texts. Denote the number of the former by

tr := #Mr.

Then log2 tr is the “information content” of a text of length r or the entropy
of Mr. This is the number of bits we need for distinguishing the elements of
Mr in a binary encoding.

Remark More generally the entropy is defined for a model that assigns
the elements of Mr different probabilities. Here we implicitly content
ourselves with using a uniform probability distribution.

We could consider the relative frequency of meaningful texts, tr/n
r, but

instead we focus on the relative information content,

log2 tr
r · log2 n

:

For an encoding of Σr we need r · log2 n bits, for an encoding of Mr only
log2 tr bits. The relative information content is the factor by which we can
“compress” the encoding of Mr compared with that of Σr. The complimen-
tary portion

1− log2 tr
r · log2 n

is “redundant”.
Usually one relates these quantities to log2 n, the information content of

a single letter, and defines:
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Definition 2 (i) The quotient

ρr(M) :=
log2 tr
r

is called the r-th density, the difference δr(M) := log2 n− ρr(M) is
called the r-th redundancy of the language M .

(ii) If ρ(M) := limr→∞ ρr(M) exists, it is called the density of M ,
and δ(M) := log2 n− ρ(M) is called the redundancy of M .

Remarks

1. Since 0 ≤ tr ≤ nr, we have lim ρr(M) ≤ log2 n.

2. If Mr 6= ∅, then tr ≥ 1, hence ρr(M) ≥ 0. If Mr 6= ∅ for almost
all r, then lim ρr(M) ≥ 0.

3. If ρ(M) exists, then tr ≈ 2rρ(M) for large r.

For natural languages one knows from empirical observations that ρr(M)
is (more or less) monotonically decreasing. Therefore density and redun-
dancy exist. Furthermore tr ≥ 2rρ(M). Here are some empirical values (for
n = 26):

M ρ(M) ≈ δ(M) ≈
English 1.5 3.2
German 1.4 3.3

The redundancy of English is 3.2
4.7 ≈ 68% (but [2] says 78%; also see [10]).

One expects that an English text (written in the 26 letter alphabet) can be
compressed by this factor. The redundancy of German is about 3.3

4.7 ≈ 70%
[10].
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5 Unicity Distance

We now apply our findings on the redundancy to the exhaustion of the key
space. We don’t deal with the expenses but only consider the feasibility. We
follow the simplified approach of Hellman.

Assumptions

1. All meaningful texts of length r have the same probability. [Otherwise
we get more complicated formulas. For natural languages this assump-
tion is clearly false when r is small. However for large r we might hope
that it follows from the usual stochastic conditions.]

2. The densitiy ρ(M) of the language M exists. [Otherwise we could
derive only a bound.]

3. All keys k ∈ K have the same probability and they are h = #K in
number.

4. All encryption functions fk for k ∈ K respect the lengths of the texts,
or in other words f(Mr) ⊆ Σr.

Now let c ∈ Σr be a ciphertext. In general—if all encryption functions
fk are different—it fits h possible plaintexts of length r in Σr. By far not all
of them are meaningful but only

h · tr
nr
≈ h · 2rρ(M)

2r·log2 n
= h · 2−rδ(M).

We expect a unique solution in Mr if

h · 2−rδ(M) ≤ 1, log2 h− rδ(M) ≤ 0, r ≥ log2 h

δ(M)
,

at least if all encryption functions fk are different; otherwise we should
replace log2 h with d = d(F ), the effective key length of the cipher F .

This motivates the following definition:

Definition 3. For a cipher F with effective key length d(F ) defined on a
language M of redundancy δ(M) we call

UD(F ) :=
d(F )

δ(M)

the unicity distance.
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Examples

We always assume the alphabet Σ = {A, . . . , Z} with n = 26, and the lan-
guage M = “English”.

1. For the shift cipher we have d = log2 26, UD ≈ 4.7/3.2 ≈ 1.5, not about
5 as suspected in the introductory example. This deviation might be
due to the many inexact steps in the derivation. In particular for small
r the approximation tr ≈ 2rρ(M) is very inexact.

2. For the monoalphabetic substitution we have d ≈ 88.4, UD ≈
88.4/3.2 ≈ 27.6. This result is in good concordance with empirical
observations on the solvability of monoalphabetic cryptograms.

3. For the Trithemius-Bellaso cipher with period l we have d ≈ 4.7 · l,
UD ≈ 1.5 · l.

4. For Porta’s disk cipher we have d ≈ 88.4 + 4.7 · l, UD ≈ 27.6 + 1.5 · l.

5. For the general polyalphabetic substitution with period l and indepen-
dent alphabets d ≈ 122 · l, UD ≈ 38 · l.

6. For the One-Time Pad over the group G = Σ we have M = K =
C = Σ∗, hence #K =∞. However it makes sense to interpret dr/δr =
r · log2 n/0 =∞ as unicity distance.
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6 Cryptological Applications

The unicity distance is a very coarse measure of the quality of a cipher.
In modern cryptology it is almost never used. For an attack with known
plaintext it is meaningless (except for perfect ciphers where it is ∞).

A large unicity distance is achieved by:

• a large key space,

• lowering the redundancy of the plaintext language, for example by
compression.

Application 1: Porta’s disk cipher is not so much stronger than the
Trithemius-Bellaso cipher because the unicity distance is greater
only by the constant summand 27.6. For a longer period the compli-
cation by permuting the primary alphabet effects not much additional
security.

Application 2: Another application of Shannon’s theory is to running
text encryption. The cryptanalysis must derive two meaningful plain-
texts of total length 2r from a ciphertext of length r. This can work
only for a language of redundancy at least 50%.

More generally consider a q-fold running text encryption with q inde-
pendent keytexts. If cryptanalysis is feasible, then meaningful plaintext
of total length (q + 1) · r is excavated from a ciphertext of length r.
We conclude that the redundancy of the language is at least ≥ q

q+1 .

Because the redundancy of German, 70%, is smaller than 3
4 we con-

clude that a triple running text encryption is secure. For English that
has somewhat less redundancy even a double running text encryption
seems to be secure.

Application 3: The unicity distance may serve as an indication for how
much ciphertext corresponding to a single key may be known to the
enemy without being of use. Or in other words: How often the key
must change.

A general short summary of Shannon’s theory consists of the rule: A
necessary condition for the solvability of a cipher is that “information con-
tent of the ciphertext + redundancy of the plaintext language” ≥ “informa-
tion content of the plaintext + information content of the key”.
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