4 Mathematical Description of Periodic Polyalphabetic Substitution

The General Case

In general a periodic polyalphabetic cipher has a key space $K \subseteq S(\Sigma)^l$, consisting of sequences of l permutations of the alphabet Σ . The key $k = (\sigma_0, \ldots, \sigma_{l-1})$ defines the encryption function $f_k: \Sigma^r \longrightarrow \Sigma^r$ given by

a_0	a_1	• • •	a_{l-1}	a_l	 a_i	•••	a_{r-1}
\downarrow	\downarrow		\downarrow	\downarrow	\downarrow		
$\sigma_0 a_0$	$\sigma_1 a_1$		$\sigma_{l-1}a_{l-1}$	$\sigma_0 a_l$	 $\sigma_{i \bmod l} a_i$		

The componentwise encryption formula for $c = f_k(a) \in \Sigma^r$ is

$$c_i = \sigma_{i \bmod l}(a_i),$$

and the formula for decryption

$$a_i = \sigma_{i \bmod l}^{-1}(c_i).$$

Effective Key Length

Bellaso Cipher

The primary alphabet is the standard alphabet, and we assume the cryptanalyst knows it. The key is chosen as word (or passphrase) $\in \Sigma^l$. Therefore

$$\begin{array}{rcl}
\#K &=& n^l, \\
d(F) &=& l \cdot \log_2(n).
\end{array}$$

For n = 26 this amounts to $\approx 4.70 \cdot l$. To avoid exhaustion l should be about 10 (pre-computer age), or about 20 (computer age). However there are far more efficient attacks against this cipher than exhaustion, making these proposals for the key lengths obsolete.

Disk Cipher

The key consists of two parts: a permutation $\in \mathcal{S}(\Sigma)$ as primary alphabet, and a keyword $\in \Sigma^{l}$. Therefore

$$\#K = n! \cdot n^l,$$

$$d(F) = \log_2(n!) + l \cdot \log_2(n) \approx (n+l) \cdot \log_2(n)$$

For n = 26 this amounts to $\approx 4.70 \cdot l + 88.38$.

If the enemy knows the primary alphabet, say be capturing a cipher disk, the effective key length reduces to that of the BELLASO cipher.

A More General Case

For a periodic polyalphabetic cipher that uses l independent alphabets,

$$K = S(\Sigma)^l,$$

$$d(F) = \log_2((n!)^l) \approx nl \cdot \log_2(n).$$

For n = 26 this is about $88.38 \cdot l$.

Another View

An l-periodic polyalphabetic substitution is an l-gram substitution, or block cipher of length l, given by the product map

$$(\sigma_0,\ldots,\sigma_{l-1}): \Sigma^l = \Sigma \times \cdots \times \Sigma \longrightarrow \Sigma \times \cdots \times \Sigma = \Sigma^l$$

that is, a monoalphabetic substitution over the alphabet Σ^l . In particular the BELLASO cipher is the shift cipher over Σ^l , identified with $(\mathbb{Z}/n\mathbb{Z})^l$.

For $\Sigma = \mathbb{F}_2$ the BELLASO cipher degenerates to the simple XOR on \mathbb{F}_2^l .