## 4 Mathematical Description of Periodic Polyalphabetic Substitution

## The General Case

In general a periodic polyalphabetic cipher has a key space $K \subseteq \mathcal{S}(\Sigma)^{l}$, consisting of sequences of $l$ permutations of the alphabet $\Sigma$. The key $k=$ $\left(\sigma_{0}, \ldots, \sigma_{l-1}\right)$ defines the encryption function $f_{k}: \Sigma^{r} \longrightarrow \Sigma^{r}$ given by

$$
\begin{array}{lllllllll}
a_{0} & a_{1} & \ldots & a_{l-1} & a_{l} & \ldots & a_{i} & \ldots & a_{r-1} \\
\downarrow & \downarrow & & \downarrow & \downarrow & & \downarrow & & \\
\sigma_{0} a_{0} & \sigma_{1} a_{1} & \ldots & \sigma_{l-1} a_{l-1} & \sigma_{0} a_{l} & \ldots & \sigma_{i \bmod l} a_{i} & \ldots & \ldots
\end{array}
$$

The componentwise encryption formula for $c=f_{k}(a) \in \Sigma^{r}$ is

$$
c_{i}=\sigma_{i \bmod l}\left(a_{i}\right),
$$

and the formula for decryption

$$
a_{i}=\sigma_{i \bmod l}^{-1}\left(c_{i}\right) .
$$

## Effective Key Length

## Bellaso Cipher

The primary alphabet is the standard alphabet, and we assume the cryptanalyst knows it. The key is chosen as word (or passphrase) $\in \Sigma^{l}$. Therefore

$$
\begin{aligned}
\# K & =n^{l}, \\
d(F) & =l \cdot \log _{2}(n) .
\end{aligned}
$$

For $n=26$ this amounts to $\approx 4.70 \cdot l$. To avoid exhaustion $l$ should be about 10 (pre-computer age), or about 20 (computer age). However there are far more efficient attacks against this cipher than exhaustion, making these proposals for the key lengths obsolete.

## Disk Cipher

The key consists of two parts: a permutation $\in \mathcal{S}(\Sigma)$ as primary alphabet, and a keyword $\in \Sigma^{l}$. Therefore

$$
\begin{aligned}
\# K & =n!\cdot n^{l}, \\
d(F) & =\log _{2}(n!)+l \cdot \log _{2}(n) \approx(n+l) \cdot \log _{2}(n)
\end{aligned}
$$

For $n=26$ this amounts to $\approx 4.70 \cdot l+88.38$.
If the enemy knows the primary alphabet, say be capturing a cipher disk, the effective key length reduces to that of the Bellaso cipher.

## A More General Case

For a periodic polyalphabetic cipher that uses $l$ independent alphabets,

$$
\begin{aligned}
K & =\mathcal{S}(\Sigma)^{l} \\
d(F) & =\log _{2}\left((n!)^{l}\right) \approx n l \cdot \log _{2}(n)
\end{aligned}
$$

For $n=26$ this is about $88.38 \cdot l$.

## Another View

An $l$-periodic polyalphabetic substitution is an l-gram substitution, or block cipher of length $l$, given by the product map

$$
\left(\sigma_{0}, \ldots, \sigma_{l-1}\right): \Sigma^{l}=\Sigma \times \cdots \times \Sigma \longrightarrow \Sigma \times \cdots \times \Sigma=\Sigma^{l},
$$

that is, a monoalphabetic substitution over the alphabet $\Sigma^{l}$. In particular the Bellaso cipher is the shift cipher over $\Sigma^{l}$, identified with $(\mathbb{Z} / n \mathbb{Z})^{l}$.

For $\Sigma=\mathbb{F}_{2}$ the Bellaso cipher degenerates to the simple XOR on $\mathbb{F}_{2}^{l}$.

