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1 Key Alphabets

The Idea of Polyalphabetic Cipher

A polyalphabetic cipher—like a monoalphabetic one—encrypts each letter
by a substitution that is defined by a permuted alphabet. However for each
letter another alphabet is used, depending on its position in the plaintext.

Thus polyalphabetic encryption breaks the invariants that led to suc-
cessful cryptanalysis of monoalphabetic substitutions:

• Letter frequencies

• l-gram frequencies

• Patterns

This method was considered unbreakable until the 19th Century, its vari-
ants that used cipher machines even until the begin of the computer era.
Nevertheless before cipher machines became available polyalphabetic sub-
stitution was rarely used because it requires concentrated attention by the
operator, and the ciphertext often is irreparably spoiled by encryption er-
rors.

The Key of a Monoalphabetic Substitution

The key of a monoalphabetic substitution over the alphabet Σ is a permu-
tation σ ∈ S(Σ). It has a unique description by the sequence of substituted
letters in the order of the alphabet, that is by the family (σ(s))s∈Σ.

Example for the standard alphabet Σ = {A, ..., Z}

1. representation by the permutation table:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

B C D F G H I J K M N W S T U V W X Y Z P A R O L E

2. or representation by the permuted alphabet alone:

B C D F G H I J K M N W S T U V W X Y Z P A R O L E

The term “monoalphabetic” reflects that this one (permuted) alphabet de-
fines the complete encryption function.

The Key of a Polyalphabetic Substitution

Now let us write several permuted alphabets below each other and apply
them in order: the first alphabet for the first plaintext letter, the second
alphabet for the second letter and so on. In this way we perform a polyal-
phabetic substitution. If the list of alphabets is exhausted before reaching
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the end of the plaintext, then we restart with the first alphabet. This method
is called periodic polyalphabetic substitution.

Example for the standard alphabet with 5 permuted alphabets

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

K N Q T W Z C F I L O R U X A D G J M P S V Y B E H

L O R U X A D G J M P S V Y B E H K N Q T W Z C F I

A D G J M P S V Y B E H K N Q T W Z C F I L O R U X

U X A D G J M P S V Y B E H K N Q T W Z C F I L O R

S V Y B E H K N Q T W Z C F I L O R U X A D G J M P

Using these alphabets we encrypt

UNIVERSITAETMAINZ = plaintext

S J W X alphabet from line 1

Y N Q I alphabet from line 2

Y Y K alphabet from line 3

F Z U alphabet from line 4

E S Q alphabet from line 5

-----------------

SYYFEJNYZSWQKUQXI = ciphertext

Classification of Polyalphabetic Substitutions

We classify polyalphabetic substitutions by four independent binary prop-
erties:

• Periodic (or repeated key)

• Aperiodic (or running key)

depending on whether the alphabets repeat cyclically or irregularly.

• Independent alphabets

• Primary alphabet and accompanying secondary alphabets

where secondary alphabets derive from the primary alphabet by a fixed
recipe. In the example above we took simple cyclical shifts. A closer inspec-
tion reveals that the definition of the shifts is given by the keyword KLAUS.

• Progressive alphabet change

• Alphabet choice controlled by a key
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depending on whether the alphabets are used one after the other in their
original order, or the order is changed by a key.

• Contextfree

• Contextsensitive

depending on whether the alphabets depend only on the position in the text,
or also on some adjacent plaintext or ciphertext letters.

In general we take a set of alphabets (only n! different alphabets are
possible at all), and use them in a certain order, periodically repeated or
not. Often one takes exactly n alphabets, each one beginning with a dif-
ferent letter. Then one can control the alphabet choice by a keyword that
is cyclically repeated, or by a long keytext that is at least as long as the
plaintext.
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2 The Invention of Polyalphabetic Substitution

Polyalphabetic Encryption in Renaissance

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/2 Polyalph/Renaissance.html

The Trithemius Table (aka Vigenère Table)

This table is used for polyalphabetic substitution with the standard alphabet
and its cyclically shifted secondary alphabets. It has n rows. The first row
consists of the alphabet Σ. Each of the following rows has the alphabet
cyclically shifted one position further to the left. For the standard alphabet
this looks like this:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

C D E F G H I J K L M N O P Q R S T U V W X Y Z A B

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

E F G H I J K L M N O P Q R S T U V W X Y Z A B C D

F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

G H I J K L M N O P Q R S T U V W X Y Z A B C D E F

H I J K L M N O P Q R S T U V W X Y Z A B C D E F G

I J K L M N O P Q R S T U V W X Y Z A B C D E F G H

J K L M N O P Q R S T U V W X Y Z A B C D E F G H I

K L M N O P Q R S T U V W X Y Z A B C D E F G H I J

L M N O P Q R S T U V W X Y Z A B C D E F G H I J K

M N O P Q R S T U V W X Y Z A B C D E F G H I J K L

N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

O P Q R S T U V W X Y Z A B C D E F G H I J K L M N

P Q R S T U V W X Y Z A B C D E F G H I J K L M N O

Q R S T U V W X Y Z A B C D E F G H I J K L M N O P

R S T U V W X Y Z A B C D E F G H I J K L M N O P Q

S T U V W X Y Z A B C D E F G H I J K L M N O P Q R

T U V W X Y Z A B C D E F G H I J K L M N O P Q R S

U V W X Y Z A B C D E F G H I J K L M N O P Q R S T

V W X Y Z A B C D E F G H I J K L M N O P Q R S T U

W X Y Z A B C D E F G H I J K L M N O P Q R S T U V

X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

Y Z A B C D E F G H I J K L M N O P Q R S T U V W X

Z A B C D E F G H I J K L M N O P Q R S T U V W X Z

Trithemius used it progressively, that is he used the n alphabets from
top to down one after the other for the single plaintext letters, with cyclic
repetition.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/Renaissance.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/Renaissance.html
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Note that this procedure involves no key and therefore is not an
encryption in the proper sense. Its security is only by obscurity.

Notwithstanding this weakness even Trithemius’s method results in a cru-
cial improvement over the monoalphabetic substitution: Each letter is en-
crypted to each other the same number of times in the mean. The frequency
distribution of the ciphertext is perfectly uniform.

The Bellaso Cipher (aka Vigenère Cipher)

Even Vigenère himself attributes this cipher to Bellaso. It uses the
Trithemius table but with the alphabet choice controlled by a keyword:
for each plaintext letter choose the row that begins with this letter. This
method uses a key and therefore is a cipher in the proper sense.

As an example take the keyword MAINZ. Then the 1st, 6th, 11th, . . .
plaintext letter is encrypted with the “M row”, the 2nd, 7th, 12th, . . . with
the “A row” and so on. Note that this results in a periodic Caesar addition
of the keyword:

p o l y a l p h a b e t i c

M A I N Z M A I N Z M A I N

---------------------------

B O T L Z X P P N A Q T Q P

In general the Bellaso cipher uses a group structure on the alphabet
Σ. For the key k = (k0, . . . , kl−1) ∈ Σl we have

Encryption: ci = ai ∗ ki mod l

Decryption: ai = ci ∗ k−1
i mod l

The first one who described this cipher algebraically as an addition appar-
ently was the French scholar Claude Comiers in his 1690 book using a 18
letter alphabet. Lacking a suitable formal notation his description is some-
what long-winded. Source:

Joachim von zur Gathen: Claude Comiers: The first arithmetical
cryptography. Cryptologia 27 (2003), 339 - 349.
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3 Tools for Polyalphabetic Substitution

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/2 Polyalph/Tools.html

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/Tools.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/Tools.html
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4 Mathematical Description of Periodic Polyal-
phabetic Substitution

The General Case

In general a periodic polyalphabetic cipher has a key space K ⊆ S(Σ)l,
consisting of sequences of l permutations of the alphabet Σ. The key k =
(σ0, . . . , σl−1) defines the encryption function fk: Σr −→ Σr given by

a0 a1 . . . al−1 al . . . ai . . . ar−1

↓ ↓ ↓ ↓ ↓
σ0a0 σ1a1 . . . σl−1al−1 σ0al . . . σi mod lai . . . . . .

The componentwise encryption formula for c = fk(a) ∈ Σr is

ci = σi mod l(ai),

and the formula for decryption

ai = σ−1
i mod l(ci).

Effective Key Length

Bellaso Cipher

The primary alphabet is the standard alphabet, and we assume the crypt-
analyst knows it. The key is chosen as word (or passphrase) ∈ Σl. Therefore

#K = nl,

d(F ) = l · log2(n).

For n = 26 this amounts to ≈ 4.70 · l. To avoid exhaustion l should be
about 10 (pre-computer age), or about 20 (computer age). However there
are far more efficient attacks against this cipher than exhaustion, making
these proposals for the key lengths obsolete.

Disk Cipher

The key consists of two parts: a permutation ∈ S(Σ) as primary alphabet,
and a keyword ∈ Σl. Therefore

#K = n! · nl,
d(F ) = log2(n!) + l · log2(n) ≈ (n+ l) · log2(n)

For n = 26 this amounts to ≈ 4.70 · l + 88.38.
If the enemy knows the primary alphabet, say be capturing a cipher disk,

the effective key length reduces to that of the Bellaso cipher.
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A More General Case

For a periodic polyalphabetic cipher that uses l independent alphabets,

K = S(Σ)l,

d(F ) = log2((n!)l) ≈ nl · log2(n).

For n = 26 this is about 88.38 · l.

Another View

An l-periodic polyalphabetic substitution is an l-gram substitution, or block
cipher of length l, given by the product map

(σ0, . . . , σl−1): Σl = Σ× · · · × Σ −→ Σ× · · · × Σ = Σl,

that is, a monoalphabetic substitution over the alphabet Σl. In particular
the Bellaso cipher is the shift cipher over Σl, identified with (Z/nZ)l.

For Σ = F2 the Bellaso cipher degenerates to the simple XOR on Fl2.
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5 The Cipher Disk Algorithm

Mathematical Notation

Take the alphabet Σ = {s0, . . . , sn−1}, and interpret (or code) it as the
additive group of the ring Z/nZ. The key (σ, k) ∈ S(Σ) × Σl of a disk
cipher consists of a primary alphabet (represented by the permutation σ)
and a keyword k = (k0, . . . , kl−1) ∈ Σl. Our notation for the corresponding
encryption function is

fσ,k: Σ∗ −→ Σ∗

Special case: The Bellaso cipher with keyword k is fε,k where ε ∈ S(Σ)
denotes the identity permutation.

The Alphabet Table

We arrange the alphabets for the polyalphabetic substitution in form of the
usual table:

s0 s1 s2 . . . sn−1

t0 t1 t2 . . . tn−1

t1 t2 t3 . . . t0
. . . . . . . . . . . . . . .
tn−1 t0 t1 . . . tn−2

where ti = σsi for 0 ≤ i ≤ n− 1.
Note that whenever we refer to an alphabet table we implicitely use an

order on the alphabet Σ. This order manifests itself by indexing the letters
as s0, . . . , sn−1.

The Encryption Function

Now we encrypt a text a = (a0, a1, a2, . . .) ∈ Σr using this notation. Let
ai = sq and ki = tp as letters of the alphabet. Then we read the ciphertext
letter ci off from row p and column q of the table:

ci = tp+q = σsp+q = σ(sp + sq) [sums in Z/nZ].

We have

ki = tp = σ(sp), sp = σ−1(ki), hence ci = σ(ai + σ−1(ki)).

If we denote by fσ the monoalphabetic substitution corresponding to σ, then
this derivation proves:

Theorem 1 The disk cipher fσ,k is the composition (or “superencryption”)
of the Bellaso encryption fε,k′, where k′ = f−1

σ (k), with the monoalphabetic
substitution fσ,

fσ,k = fσ ◦ fε,k′
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Algorithm

The naive straightforward algorithm for the disk cipher is

• Take the next plaintext letter.

• Take the next alphabet.

• Get the next ciphertext letter.

From Theorem 1 we derive an algorithm that is a bit more efficient:

1. Take k′ = f−1
σ (k), in coordinates k′i = σ−1(ki) for 0 ≤ i < l.

2. Add a and (the periodically extended) k′ over Z/nZ, and get b, in
coordinates bj = aj + k′j mod l

3. Take c = fσ(b) ∈ Σr, in coordinates cj = σ(bj).

A Perl program implementing this algorithm is on the web page
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/

porta.pl, the corresponding program for decryption on http://

www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/

portadec.pl. They can be called online from the pages
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/

2 Polyalph/portaenc.html and http://www.staff.uni-mainz.de/

pommeren/Cryptology/Classic/2 Polyalph/portadec.html

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/porta.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/porta.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/portadec.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/portadec.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/portadec.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/portaenc.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/portaenc.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/portadec.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/portadec.html
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6 Analysis of Periods

Kasiski’s approach

Already in the 16th Century Porta and the Argentis occa-
sionally broke polyalphabetic encryptions by guessing the key or
a probable word. For some more historical bits see the web
page http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/

2 Polyalph/AnaPer.html

An attack with known plaintext is easy against a disk cipher as soon as
the primary alphabet is compromised, for example by a lost cipher disk. It
is trivial against the Bellaso cipher that uses the standard alphabet. In
contrast it is quite difficult against ciphers that use independent alphabets.

In 1863 the Prussian Major F. W. Kasiski published a solution that
immediately demolished the belief in the security of periodic polyalphabetic
ciphers. In fact Babbage had found this method ten years before but never
published it. Therefore it is appropriate to credit the method to Kasiski.

The solution proceeds in three steps:

1. Determine the period l.

2. Arrange the ciphertext in rows of length l. Then the columns each are
encrypted by a (different) monoalphabetic substitution.

3. Break the monoalphabetic columns.

Step 3, that is cryptanalyzing the monoalphabetically encrypted columns,
faces the complication that the columns don’t represent connected mean-
ingful texts. Pattern search is pointless. However frequency analysis makes
sense.

There are some simplifications for dependent alphabets:

• Adjusting the frequency curves. This works when the primary alphabet
is known, see Sections 7 and 8.

• Symmetry of position when the primary alphabet is unknown (not
treated here, but see Chapter 5). This method, proposed by Kerck-
hoffs, uses regularities in the alphabet table to infer further entries
from already known entries, for example by completing the diagonals
in the alphabet table of a disk cipher.

Especially simple is the situation with Bellaso’s cipher, as soon as the
period is known: Each column is Caesar encrypted. Therefore we need to
identify only one plaintext letter in each column.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/AnaPer.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/AnaPer.html
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How to Determine the Period

Three approaches to determining the period of a periodic polyalphabetic
cipher are

1. Exhaustion: Try l = 1, 2, 3, . . . one after each other. The correct l
reveals itself by the appropriate frequency distribution of the letters
in each column. As tools use some statistical “goodness of fit” tests.
We’ll study appropriate methods in Chapter 3.

2. Search for repetitions, see next subsection. This is an instance of the
general method “pattern search”.

3. Coincidence analysis after Friedman, Kullback, and Sinkov. This
is also a subject of Chapter 3, and is an instance of the general method
“statistical analysis”.

In contrast to the exhaustion approach the other two methods immediately
identify the situation where there is no period.

Search for Repetitions

We start with three observations:

1. If a plaintext is encrypted using l alphabets in cyclic order, and if a
sequence of letters occurs k times in the plaintext, than this sequence
occurs in the ciphertext about k/l times encrypted with the same
sequence of alphabets.

2. In each of these occurrences where the sequence is encrypted the same
way the ciphertext contains a repeated pattern in a distance that is a
multiple of l, see Figure 1.

3. Not every repeated pattern in the ciphertext necessarily arises in this
way. It could be by accident, see Figure 2. However the probability of
this event is noticeably smaller.

An assessment of this probability is related to the birthday paradox of prob-
ability theory, and is contained in Appendix C. It was published in

K. Pommerening: Kasiski’s Test: Couldn’t the repetitions be by
accident? Cryptologia 30 (2006), 346-352.

A Perl program that searches for repetitions is on the web page
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/

kasiski.pl

For online use see the web form http://www.staff.uni-mainz.de/

pommeren/Cryptology/Classic/2 Polyalph/kasiski1.html

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/kasiski.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/kasiski.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/kasiski1.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/kasiski1.html
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key key . . . key

? ?
...the... ...the...plaintext

-� distance = multiple of l

Figure 1: Repetition in ciphertext

GREENGREENGREENGREENGREENGREENGREENGREENGREENGREENGREENGREEN

THENSASCOLLECTEVERYTHINGMENTALITYISLARGELYAHOLDOVERFROMTHECO

ZYIRFGJGSYRVGXRBVVCGNZRKZKEXEYOKCMFRRVKRRPELBRUSZRXWVSZZYIGB

GREENGREENGREENGREENGREENGREENGREENGREENGREENGREENGREEN

LDWARWHENAVOYEURISTICINTERESTINTHESOVIETUNIONWASTHENORM

RUAEECYIRNBFCIHXZWXVIZRXRXVWXVTKLIFUMMIGAEMSACRWXUKESVZ

6 6

? ??

6

accidental

Figure 2: True and accidental repetitions
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7 Cryptanalysis of a Polyalphabetic Ciphertext

(for a German plaintext)

Finding the Period by Searching Repetitions

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/

/2 Polyalph/Kasiski.html

Column Analysis and Rearrangement

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic

/2 Polyalph/Columns.html and http://www.staff.uni-mainz.de/

pommeren/Cryptology/Classic/2 Polyalph/Rearrang.html

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic//2_Polyalph/Kasiski.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic//2_Polyalph/Kasiski.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/Columns.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/Columns.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/Rearrang.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/Rearrang.html


K. Pommerening, Polyalphabetic Substitutions 16

8 Rearranging the Columns

The Problem

The formula for the disk cipher from Theorem 1 was fσ,k = fσ ◦ fε,k′ where
k′ = f−1

σ (k). However we didn’t use this formula in our analysis but rather a
similar one of the type fσ,k = g ◦fσ where g should describe the shifts in the
alphabets and g−1 the rearrangement. What we did was first rearrange the
shifts in the different columns, and then solve the resulting monoalphabetic
ciphertext. Note that for this method to work in general the primary alpha-
bet must be known. Unfortunately there is no useful general interpretation
of the formula g = fσ ◦ fε,k′ ◦ f−1

σ when σ is unknown.
We’ll analyze the situation, first for an example.

Example

We take the standard alphabet Σ = A...Z, and consider an alphabet table.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

---------------------------------------------------

Q W E R T Z U I O P A S D F G H J K L Y X C V B N M

W E R T Z U I O P A S D F G H J K L Y X C V B N M Q

E R T Z U I O P A S D F G H J K L Y X C V B N M Q W

... ... ...

M Q W E R T Z U I O P A S D F G H J K L Y X C V B N

Phrased in terms of permutations the top row, Row 0, the standard alphabet,
corresponds to the identical permutation ε ∈ S(Σ). The next row, Row 1,
the primary alphabet, corresponds to the permutation σ ∈ S(Σ). Row 2
corresponds to σ ◦ τ , where τ is the alphabet shift

τ(A) = B, τ(B) = C, . . . , τ(Z) = A

Row i corresponds to σ ◦ τ i−1. For the concrete example we have

σ(A) = Q, σ(B) = W, . . .

and thus
σ ◦ τ(A) = σ(B) = W, σ ◦ τ(B) = σ(C) = E, . . .

On the other hand

τ ◦ σ(A) = τ(Q) = R, τ ◦ σ(B) = τ(W) = X, . . .
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Shifts in the Primary Alphabet

Recall the alphabet table in the general case

s0 s1 s2 . . . sn−1

t0 t1 t2 . . . tn−1

t1 t2 t3 . . . t0
. . . . . . . . . . . . . . .
tn−1 t0 t1 . . . tn−2

where ti = σsi for 0 ≤ i ≤ n− 1, and σ is the permutation that defines the
primary alphabet.

Identify as usual the alphabet Σ = {s0, . . . , sn−1} with Z/nZ, the inte-
gers modn, via i 7→ σi and take indices mod n. Mathematical expressions
for the shifts in the original and primary alphabets are

• τ = shift by 1 in the original alphabet, τ(si) = si+1.

• τk = shift by k in the original alphabet, τk(si) = si+k.

• στσ−1 = shift by 1 in the primary alphabet,

ti
σ−1

7→ si
τ7→ si+1

σ7→ ti+1

• στkσ−1 = (στσ−1)k = shift by k in the primary alphabet.

The alphabet table, interpreted as list of permutations, is the orbit of
σ ∈ S(Σ) under iterated right translation by τ (or under the cyclic subgroup
〈τ〉 ⊆ S(Σ) generated by τ).

The “naive” shift that we performed in Section 7 shifted the single letters
of the primary alphabet by a certain number of positions in the standard
alphabet—we performed τ i ◦ σ for some value i. Why was this successful?
Under what conditions are the naively shifted primary alphabets again rows
of the alphabet table?

Decimated alphabets

We take the ordering of the alphabets into account and let T1 = (t0, . . . , tn−1)
be the ordered primary alphabet where ti = σsi. The secondary alphabets
then are Ti = (ti−1, . . . , tn−1, t0, . . . , ti−2) for i = 2, . . . , n. They correspond
to the permutations σ ◦ τ i−1, that is Ti = (σsi−1, σsi, . . .).

The primary alphabet used in the example of Section 7 was of a special
kind: It had ti = s3i mod 26. The corresponding formula for the general case
is

ti = ski mod n,

and ti for i = 0, . . . , n − 1 runs through all elements of Σ if and only if k
and n are relative prime.
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Definition. Let the alphabet Σ be linearly ordered as (s0, . . . , sn−1), and
let gcd(k, n) = 1. The (ordered) alphabet T = (t0, . . . , tn−1) is called
decimated alphabet of order k (of Σ with the given linear order
relation) if there is an index p ∈ {0, . . . , n−1} such that tp+i = ski mod n

for i = 0, . . . , n− 1.

That means, beginning with tp = s0 we take each k-th letter from Σ.
If the primary alphabet is decimated, so are all the secondary alphabets;

we get them all by varying the index p.
Now when we apply the shift τ to the (ordered) primary and secondary

alphabets T1, . . . , Tn we get new alphabets fτ (T1), . . . , fτ (Tn); note that we
interpret the n-tuples Ti as texts and apply τ elementwise. The question we
want to answer is whether the fτ (Ti) belong to the collection of the Ti. The
answer involves the normalizer N(〈τ〉) of the subgroup 〈τ〉 ≤ S(Σ).

Theorem 2 (Decimated alphabets) Let the alphabet Σ be linearly
ordered as (s0, . . . , sn−1). Let the (ordered) primary alphabet T1 =
(t0, . . . , tn−1) be defined by ti = σsi where σ ∈ S(Σ), and let T2, . . . , Tn
be the corresponding ordered secondary alphabets. Then the following state-
ments are equivalent:

(i) There is a j ∈ {1, . . . , n} with fτ (T1) = Tj.
(ii) fτ permutes the {T1, . . . , Tn}.
(iii) T1 is a decimated alphabet of Σ.
(iv) σ ∈ N(〈τ〉).

Proof. “(i) =⇒ (iv)”: fτ (T1) = Tj means that τ ◦ σ = σ ◦ τ j . Then
σ−1 ◦ τ ◦ σ ∈ 〈τ〉 or σ ∈ N(〈τ〉).

“(iv) =⇒ (iii)”: By conjugation σ defines an automorphism of the cyclic
group 〈τ〉. These automorphisms are known, the following Lemma 1 gives
σ ◦ τ ◦ σ−1 = τk for some k, relative prime with n. The letter s0 occurs
somewhere in T1, so let s0 = tp. Then σsp = tp = s0 and

tj+p = σsj+p = στ jsp = τ jk(σsp) = τ jks0 = sjk for j = 0, . . . , n− 1,

where as usual we take the indices mod n.
“(iii) =⇒ (iv)”: Let p and k as in the definition. For any i we have

τkσsp+i = τktp+i = τkski = ski+k = sk(i+1) = tp+i+1 = σsp+i+1 = στsp+i.

From this we conclude σ ◦ τ = τk ◦ σ or σ ◦ τ ◦ σ−1 ∈ 〈τ〉.
“(iv) =⇒ (ii)”: We have σ−1 ◦τ ◦σ = τk

′
where k′k ≡ 1 (mod n) whence

τ ◦ σ = σ ◦ τk′ . The permuted alphabet Ti corresponds to the permutation
σ◦τ i−1. Therefore fτTi corresponds to τ ◦σ◦τ i−1 = σ◦τk′+i−1. We conclude
fτTi = Tk′+i.

“(ii) =⇒ (i)” is the restriction to a special case. 3
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Lemma 1 Let G = 〈g〉 be a finite cyclic group of order m. Then the auto-
morphisms of G are the power maps g 7→ gk where k is relatively prime to
m. In other words, the automorphism group AutG is isomorphic with the
multiplicative group (Z/mZ)×.

Proof. Let h be an automorphism of G. Then h(g) = gk for some k ∈ Z.
This k uniquely defines h on all of G, and k is uniquely determined by h up
to multiples of Ord(g) = m. The power map g 7→ gk is bijective if and only
if k is relatively prime to m. 3
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9 Summary

The canonical method of cryptanalyzing the disk cipher fσ,k proceeds in
three steps:

1. Determine the period l.

2. Rearrange the ciphertext in rows of length l.

3. Reconstruct the monoalphabets of the columns.

Note that the effort is essentially independent of the key length. However
the success probability decreases with the period length, because

• The probability of finding non-accidental repetitions decreases.

• Finding useful frequency distributions in the columns becomes harder.

Some special cases have special facilities:

• For a Bellaso cipher or more generally for a disk cipher with a deci-
mated alphabet or even more generally for a disk cipher with a known
primary alphabet we may rearrange the monoalphabets of the columns
and are left with a large monoalphabetic ciphertext.

• Known plaintext gives the plaintext equivalents of single letters in a
few columns that may be extended to other columns by symmetry of
position when the alphabets are related, for example for a disk cipher
(not treated here, but see Chapter 5).

These findings result in two recommendations for the use of polyalpha-
betic ciphers:

• The larger the period, the better the security.

• Independent alphabets more reliably protect from attacks.

Both of these recommendations make polyalphabetic ciphers more cumber-
some in routine use, and therefore in history were adopted only after many
failures.
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