14 KULLBACK's Cross-Product Sum Statistic

For a decision whether two texts $a \in \Sigma^{r}, b \in \Sigma^{q}$ belong to the same language we could consider $\varphi(a \| b)$, the coincidence index of the concatenated string $a|\mid b$. It should approximately equal the coincidence index of the language, or-in the negative case - be significantly smaller. This index evaluates as

$$
\begin{gathered}
(q+r)(q+r-1) \cdot \varphi(a \| b)=\sum_{s \in \Sigma}\left[m_{s}(a)+m_{s}(b)\right]\left[m_{s}(a)+m_{s}(b)-1\right] \\
=\sum_{s \in \Sigma} m_{s}(a)^{2}+\sum_{s \in \Sigma} m_{s}(b)^{2}+2 \cdot \sum_{s \in \Sigma} m_{s}(a) m_{s}(b)-r-q
\end{gathered}
$$

In this expression we consider terms depending on only one of the texts as irrelevant for the decision problem. Omitting them we are left with the "cross-product sum"

$$
\sum_{s \in \Sigma} m_{s}(a) m_{s}(b)
$$

From another viewpoint we could consider the "Euclidean distance" of a and b in the n-dimensional space of single letter frequencies

$$
d(a, b)=\sum_{s \in \Sigma}\left[m_{s}(a)-m_{s}(b)\right]^{2}=\sum_{s \in \Sigma} m_{s}(a)^{2}+\sum_{s \in \Sigma} m_{s}(b)^{2}-2 \cdot \sum_{s \in \Sigma} m_{s}(a) m_{s}(b)
$$

and this also motivates considering the cross-product sum. It should be large for texts from the same language, and small otherwise.

Definition

Let Σ be a finite alphabet. Let $a \in \Sigma^{r}$ and $b \in \Sigma^{q}$ be two texts of lengths $r, q \geq 1$. Then

$$
\chi(a, b):=\frac{1}{r q} \cdot \sum_{s \in \Sigma} m_{s}(a) m_{s}(b),
$$

where m_{s} denotes the frequency of the letter s in a text, is called crossproduct sum of a and b.

For each pair $r, q \in \mathbb{N}_{1}$ this defines a map

$$
\chi: \Sigma^{r} \times \Sigma^{q} \longrightarrow \mathbb{Q}
$$

A Perl program, chi.pl, is in http://www.staff.uni-mainz.de/pommeren/ Cryptology/Classic/Perl/.

Transforming a and b by the same monoalphabetic substitution permutes the summands of $\chi(a, b)$. Therefore χ is invariant under monoalphabetic substitution.

Lemma 2 Always $\chi(a, b) \leq 1$. Equality holds if and only if a and b consist of repetitions of the same single letter.

Proof. We use the Cauchy-Schwartz inequality:

$$
\begin{aligned}
\chi(a, b)^{2}=\left(\sum_{s \in \Sigma} \frac{m_{s}(a)}{r} \frac{m_{s}(b)}{q}\right)^{2} & \leq \sum_{s \in \Sigma}\left(\frac{m_{s}(a)}{r}\right)^{2} \cdot \sum_{s \in \Sigma}\left(\frac{m_{s}(b)}{q}\right)^{2} \\
& \leq \sum_{s \in \Sigma} \frac{m_{s}(a)}{r} \cdot \sum_{s \in \Sigma} \frac{m_{s}(b)}{q}=1
\end{aligned}
$$

Equality holds if and only if

- $m_{s}(a)=c \cdot m_{s}(b)$ for all $s \in \Sigma$ with a fixed $c \in \mathbb{R}$,
- and all $\frac{m_{s}(a)}{r}$ and $\frac{m_{s}(b)}{q}$ are 0 or 1.

These two conditions together are equivalent with both of a and b consisting of only one - the same - repeated letter.

Considering the quantity $\psi(a):=\chi(a, a)=\sum_{s} m_{s}(a)^{2} / r^{2}$ doesn't make much sense for Corollary 1 of the Kappa-Phi-Theorem gives a linear (more exactly: affine) relation between ψ and φ :

Lemma 3 For all $a \in \Sigma^{r}, r \geq 2$,

$$
\varphi(a)=\frac{r}{r-1} \cdot \psi(a)-\frac{1}{r-1}
$$

Side Remark: Cohen's Kappa

In statistical texts one often encounters a related measure of coincidence between two series of observations: Cohen's kappa. It combines Friedman's kappa and Kullback's chi. Let $a=\left(a_{1}, \ldots, a_{r}\right), b=\left(b_{1}, \ldots, b_{r}\right) \in \Sigma^{r}$ be two texts over the alphabet Σ (or two series of observations of data of some type). Then consider the matrix of frequencies

$$
m_{s t}(a, b)=\#\left\{i \mid a_{i}=s, b_{i}=t\right\} \quad \text { for } s, t \in \Sigma
$$

Its row sums are

$$
m_{s}(a)=\#\left\{i \mid a_{i}=s\right\}=\sum_{t \in \Sigma} m_{s t}(a, b)
$$

its column sums are

$$
m_{t}(b)=\#\left\{i \mid b_{i}=t\right\}=\sum_{s \in \Sigma} m_{s t}(a, b)
$$

its diagonal sum is

$$
\sum_{s \in \Sigma} m_{s s}(a, b)=\sum_{s \in \Sigma} \#\left\{i \mid a_{i}=b_{i}=s\right\}=\#\left\{i \mid a_{i}=b_{i}\right\} .
$$

The intermediate values from which CoHEN's kappa is calculated are

$$
p_{0}=\frac{1}{r} \cdot \sum_{s \in \Sigma} m_{s s}(a, b)=\kappa(a, b) \quad \text { and } \quad p_{e}=\frac{1}{r^{2}} \cdot \sum_{s \in \Sigma} m_{s}(a) m_{s}(b)=\chi(a, b)
$$

Cohen's kappa is defined for $a \neq b$ by

$$
\mathrm{K}(a, b):=\frac{p_{0}-p_{e}}{1-p_{e}}=\frac{\kappa(a, b)-\chi(a, b)}{1-\chi(a, b)}
$$

If a and b are random strings with not necessarily uniform letter probabilities p_{s}, then K is asymptotically normally distributed with expectation 0 and variance

$$
\frac{p_{0} \cdot\left(1-p_{0}\right)}{r \cdot\left(1-p_{0}\right)^{2}}
$$

Therefore its use is convenient for large series of observations-or large strings-but in cryptanalysis we mostly have to deal with short strings, and considering κ and χ separately may retain more information.

Mean Values

For a fixed $a \in \Sigma^{r}$ we determine the mean value of $\kappa(a, b)$ taken over all $b \in \Sigma^{q}$.

$$
\begin{aligned}
\frac{1}{n^{q}} \cdot \sum_{b \in \Sigma^{q}} \chi(a, b) & =\frac{1}{n^{q}} \cdot \sum_{b \in \Sigma^{q}}\left[\frac{1}{r q} \cdot \sum_{s \in \Sigma} m_{s}(a) m_{s}(b)\right] \\
& =\frac{1}{r q n^{q}} \cdot \sum_{s \in \Sigma} m_{s}(a) \underbrace{\sum_{b \in \Sigma^{q}} m_{s}(b)}_{q \cdot n^{q-1}} \\
& =\frac{1}{r q n^{q}} \cdot r \cdot q \cdot n^{q-1}=\frac{1}{n}
\end{aligned}
$$

where we used the corollary of Proposition 4.
In an analogous way we determine the mean value of $\chi\left(a, f_{\sigma}(b)\right)$ for fixed $a, b \in \Sigma^{r}$ over all permutations $\sigma \in \mathcal{S}(\Sigma)$:

$$
\frac{1}{n!} \cdot \sum_{\sigma \in \mathcal{S}(\Sigma)} \chi\left(a, f_{\sigma}(b)\right)=\frac{1}{r q n!} \cdot \sum_{\sigma \in \mathcal{S}(\Sigma)} \sum_{s \in \Sigma} m_{s}(a) m_{s}\left(f_{\sigma}(b)\right)
$$

As usual we interchange the order of summation, and evaluate the sum

$$
\begin{aligned}
\sum_{\sigma \in \mathcal{S}(\Sigma)} m_{s}\left(f_{\sigma}(b)\right) & =\frac{1}{n} \cdot \sum_{t \in \Sigma} \sum_{\sigma \in \mathcal{S}(\Sigma)} m_{t}\left(f_{\sigma}(b)\right) \\
& =\frac{1}{n} \cdot \sum_{\sigma \in \mathcal{S}(\Sigma)} \underbrace{\sum_{t \in \Sigma} m_{t}\left(f_{\sigma}(b)\right)}_{q}=\frac{1}{n} \cdot n!\cdot q=(n-1)!\cdot q
\end{aligned}
$$

using the symmetry with respect to s. Therefore

$$
\begin{aligned}
\frac{1}{n!} \cdot \sum_{\sigma \in \mathcal{S}(\Sigma)} \chi\left(a, f_{\sigma}(b)\right) & =\frac{1}{r q n!} \cdot \sum_{s \in \Sigma} m_{s}(a) \cdot \sum_{\sigma \in \mathcal{S}(\Sigma)} m_{s}\left(f_{\sigma}(b)\right) \\
& =\frac{1}{r q n!} \cdot r \cdot(n-1)!\cdot q=\frac{1}{n}
\end{aligned}
$$

Note that this conclusion also holds for $a=b$.
This derivation shows:
Proposition 5 (i) The mean value of $\chi(a, b)$ over all texts $b \in \Sigma^{*}$ of a fixed length q is $\frac{1}{n}$ for all $a \in \Sigma^{*}$.
(ii) The mean value of $\chi(a, b)$ over all $a \in \Sigma^{r}$ and $b \in \Sigma^{q}$ is $\frac{1}{n}$ for all $r, q \in \mathbb{N}_{1}$.
(iii) The mean value of $\chi\left(a, f_{\sigma}(b)\right)$ over all monoalphabetic substitutions with $\sigma \in \mathcal{S}(\Sigma)$ is $\frac{1}{n}$ for each pair $a, b \in \Sigma^{*}$.
(iv) The mean value of $\chi\left(f_{\sigma}(a), f_{\tau}(b)\right)$ over all pairs of monoalphabetic substitutions, with $\sigma, \tau \in \mathcal{S}(\Sigma)$, is $\frac{1}{n}$ for each pair $a, b \in \Sigma^{*}$.

Interpretation

- For a given text a and a "random" text b we have $\chi(a, b) \approx \frac{1}{n}$.
- For "random" texts a and b we have $\chi(a, b) \approx \frac{1}{n}$.
- For given texts a and b and a "random" monoalphabetic substitution f_{σ} we have $\chi\left(a, f_{\sigma}(b)\right) \approx \frac{1}{n}$. This remark justifies treating a nontrivially monoalphabetically encrypted text as random with respect to χ and plaintext.
- For given texts a and b and two "random" monoalphabetic substitutions f_{σ}, f_{τ} we have $\chi\left(f_{\sigma}(a), f_{\tau}(b)\right) \approx \frac{1}{n}$.

Empirical Results

We collect empirical results for 2000 pairs of 100 letter texts using chistat.pl, from http://www.staff.uni-mainz.de/pommeren/ Cryptology/Classic/Perl/. For English we use the book Dr Thorndyke Short Story Omnibus by R. Austin Freeman from Project Gutenberg. We extract a first part of 402347 letters (Thorn1.txt) and take the first 400000 of them for our statistic. In the same way for German we use Die Juweleninsel by Karl May from Karl-May-Gesellschaft (Juwelen1.txt, 434101 letters). For random texts we generate 400000 letters by Perl's random generator (RndT400K.txt). (All texts in http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/ Files/.)

The results are in Tables 31, 32, and 33. We see that χ-in contrast with the coincidence index κ-performs extremely well, in fact in our experiments it even completely separates English and German texts from random texts of length 100. It is a test with power near 100% and error probability near 0%. The χ test even distinguishes between English and German texts at the 5% error level with a power of almost 75%. For this assertion compare the 95\% quantile for English with the first quartile for German.

Table 31: Distribution of χ for 2000 English text pairs of 100 letters

Minimum:	0.0500		
Median:	0.0660	Mean value:	0.0663
Maximum:	0.0877	Standard dev:	0.0049
1st quartile:	0.0630	5% quantile:	0.0587
3rd quartile:	0.0693	95% quantile:	0.0745

The results for 100 letter texts encourage us to try 26 letter texts. To this end we need 104000 letters for each language. We extract the next 104009 letters from Dr Thorndyke Short Story Omnibus (Thorn2.txt), and the next 104293 letters from Die Juweleninsel (Juwelen2.txt). We construct random text by taking 104000 random numbers between 0 and 25 from random. org (RndT104K.txt). The results are in Tables 34, 35, and 36. The χ-test is quite strong even for 26 letters: At the 5% error level its power is around 91% for English, 98\% for German.

Table 32: Distribution of χ for 2000 German text pairs of 100 letters

Minimum:	0.0578		
Median:	0.0792	Mean value:	0.0794
Maximum:	0.1149	Standard dev:	0.0074
1st quartile:	0.0742	5% quantile:	0.0677
3rd quartile:	0.0840	95\% quantile:	0.0923

Table 33: Distribution of χ for 2000 random text pairs of 100 letters

Minimum:	0.0337		
Median:	0.0400	Mean value:	0.0400
Maximum:	0.0475	Standard dev:	0.0020
1st quartile:	0.0387	5% quantile:	0.0367
3rd quartile:	0.0413	95% quantile:	0.0433

Table 34: Distribution of χ for 2000 English text pairs of 26 letters

Minimum:	0.0266		
Median:	0.0666	Mean value:	0.0666
Maximum:	0.1169	Standard dev:	0.0120
1st quartile:	0.0577	5% quantile:	0.0488
3rd quartile:	0.0740	95% quantile:	0.0873

Table 35: Distribution of χ for 2000 German text pairs of 26 letters

Minimum:	0.0325		
Median:	0.0784	Mean value:	0.0793
Maximum:	0.1538	Standard dev:	0.0154
1st quartile:	0.0680	5% quantile:	0.0562
3rd quartile:	0.0888	95% quantile:	0.1065

Table 36: Distribution of χ for 2000 random text pairs of 26 letters

Minimum:	0.0178		
Median:	0.0385	Mean value:	0.0386
Maximum:	0.0680	Standard dev:	0.0075
1st quartile:	0.0340	5% quantile:	0.0266
3rd quartile:	0.0429	95% quantile:	0.0518

