10 The Inner Coincidence Index of a Text

Definition

Let $a \in \Sigma^{r}(r \geq 2)$ be a text, and $\left(\kappa_{1}(a), \ldots, \kappa_{r-1}(a)\right)$ be its autocoincidence spectrum. Then the mean value

$$
\varphi(a):=\frac{1}{r-1}\left[\kappa_{1}(a)+\cdots+\kappa_{r-1}(a)\right]
$$

is called the (inner) coincidence index of a.
It defines a map

$$
\varphi: \Sigma^{(\geq 2)} \longrightarrow \mathbb{Q}
$$

See the Perl program phi.pl from http://www.staff.uni-mainz.de/ pommeren/Cryptology/Classic/Perl/.

Another description

Pick up the letters from two random positions of a text a. How many "twins" will you find? That means the same letter $s \in \Sigma$ at the two positions, or a "coincidence"?

Let $m_{s}=m_{s}(a)=\#\left\{j \mid a_{j}=s\right\}$ be the number of occurrences of s in a. Then the answer is

$$
\frac{m_{s} \cdot\left(m_{s}-1\right)}{2}
$$

times. Therefore the total number of coincidences is

$$
\sum_{s \in \Sigma} \frac{m_{s} \cdot\left(m_{s}-1\right)}{2}=\frac{1}{2} \cdot \sum_{s \in \Sigma} m_{s}^{2}-\frac{1}{2} \cdot \sum_{s \in \Sigma} m_{s}=\frac{1}{2} \cdot \sum_{s \in \Sigma} m_{s}^{2}-\frac{r}{2}
$$

We count these coincidences in another way by the following algorithm: Let z_{q} be the number of already found coincidences with a distance of q for $q=1, \ldots, r-1$, and initialize it as $z_{q}:=0$. Then execute the nested loops

```
for }i=0,\ldots,r-2 [loop through the text a
    for j=i+1,\ldots,r-1 [loop through the remaining text]
        if }\mp@subsup{a}{i}{}=\mp@subsup{a}{j}{}\quad\mathrm{ [coincidence detected]
            increment }\mp@subsup{z}{j-i}{}\quad[\mathrm{ [with distance }j-i
            increment }\mp@subsup{z}{r+i-j}{\mathrm{ [and with distance }r+i-j]
```

After running through these loops the variables z_{1}, \ldots, z_{r-1} have values such that

Lemma 1 (i) $z_{1}+\cdots+z_{r-1}=\sum_{s \in \Sigma} m_{s} \cdot\left(m_{s}-1\right)$.
(ii) $\kappa_{q}(a)=\frac{z_{q}}{r}$ for $q=1, \ldots, r-1$.

Proof. (i) We count all coincidences twice.
(ii) $\kappa_{q}(a)=\frac{1}{r} \cdot \#\left\{j \mid a_{j+q}=a_{j}\right\}$ by definition (where the indices are taken $\bmod r)$.

The Kappa-Phi Theorem

Theorem 1 (Kappa-Phi Theorem) The inner coincidence index of a text $a \in \Sigma^{*}$ of length $r \geq 2$ is the proportion of coincidences among all letter pairs of a.

Proof. The last term of the equation

$$
\begin{aligned}
\varphi(a) & =\frac{\kappa_{1}(a)+\cdots \kappa_{r-1}(a)}{r-1}=\frac{z_{1}+\cdots+z_{r-1}}{r \cdot(r-1)} \\
& =\frac{\sum_{s \in \Sigma} m_{s} \cdot\left(m_{s}-1\right)}{r \cdot(r-1)}=\frac{\sum_{s \in \Sigma} \frac{m_{s} \cdot\left(m_{s}-1\right)}{2}}{\frac{r \cdot(r-1)}{2}}
\end{aligned}
$$

has the total number of coincidences in its numerator, and the total number of letter pairs in its denominator. \diamond

Corollary 1 The inner coincidence index may be expressed as

$$
\varphi(a)=\frac{r}{r-1} \cdot \sum_{s \in \Sigma}\left(\frac{m_{s}}{r}\right)^{2}-\frac{1}{r-1}
$$

Proof. This follows via the intermediate step

$$
\varphi(a)=\frac{\sum_{s \in \Sigma} m_{s}^{2}-r}{r \cdot(r-1)}
$$

\diamond

Note that this corollary provides a much faster algorithm for determining $\varphi(a)$. The definition formula needs $r-1$ runs through a text of length r, making $r \cdot(r-1)$ comparisons. The above algorithm reduces the costs to $\frac{r \cdot(r-1)}{2}$ comparisons. Using the formula of the corollary we need only one pass through the text, the complexity is linear in r. For a Perl program implementing this algorithm see the Perl script coinc.pl from the web page http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/

Corollary 2 The inner coincidence index of a text is invariant under monoalphabetic substitution.

Proof. The number of letter pairs is unchanged.

