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1 Recognizing Plaintext: Friedman’s Most-
Frequent-Letters Test

We begin with the first question: Does a given text belong to a certain lan-
guage? Friedman gave a quite simple procedure for distinguishing valid
text from random noise that works surprisingly well, even for short texts.
Besides it makes a smooth introduction to statistical test theory.

Friedman’s Procedure

Assume we are given a string of letters and want to decide whether it is a
part of a meaningful text (in a given language, say English), or whether it
is random gibberish. Our first contact with this problem was the exhaustion
attack against the simple shift cipher that produced 26 strings, exactly one of
which represented the correct solution. Cherry-picking it was easy by visual
inspection. But for automating this decision procedure we would prefer a
quantitative criterion.

Such a criterion was proposed by Friedman in Riverbank Publication
No. 16 from 1918 [3]. The procedure is

1. Identify a set of most frequent letters from the target language. For
English take ETOANIRSHD that make up 73.9% of an average English
text but only 10/26 ⇡ 38.5% of a random text.

2. Count the cumulative frequencies of these most-frequent letters for
each of the candidate strings.

3. Pick the string with the highest score. If this doesn’t work, also con-
sider the next highest scores.

Example. For the Caesar example in Section 1.3 the scores are in Table 1.
We immediately see that the correct solution CAESAR has the highest
score (even if this is not a genuine English word).

The example shows that Friedman’s procedure seems to work well even
for quite short strings. To confirm this observation we analyze the distribu-
tion of the Most-Frequent-Letters scores—in shortMFL scores—for strings
of natural languages and for random strings. First we consider this task from
a theoretic viewpoint, then we also perform some empirical evaluations.

The distribution of MFL Scores

Consider strings of length r over an alphabet ⌃ whose letters are indepen-
dently drawn with certain probabilities, the letter s 2 ⌃ with probability
ps. Let M ✓ ⌃ be a subset and p =

P
s2M ps be the cumulative probability
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Table 1: Friedman scores for the exhausion of a shift cipher

FDHVDU 3 OMQEMD 3 XVZNVM 1

GEIWEV 3 PNRFNE 4 <--- YWAOWN 3

HFJXFW 1 QOSGOF 3 ZXBPXO 1

IGKYGX 1 RPTHPG 3 AYCQYP 1

JHLZHY 2 SQUIQH 3 BZDRZQ 2

KIMAIZ 3 TRVJRI 4 <--- CAESAR 5 <===

LJNBJA 2 USWKSJ 2 DBFTBS 3

MKOCKB 1 VTXLTK 2 ECGUCT 2

NLPDLC 2 WUYMUL 0

of the letters in M. The MFL score of a string a = (a1, . . . , ar) 2 ⌃r with
respect to M is

NM(a) = #{i | ai 2 M}.

To make the scores for di↵erent lengths comparable we also introduce the
MFL rate

⌫M(a) =
NM(a)

r
.

The MFL rate defines a function

⌫M : ⌃⇤ �! Q.

(Set ⌫M(;) = 0 for the empty string ; of length 0.)
The distribution of scores is binomial, that is the probability that a

string a 2 ⌃r contains exactly k letters from M is given by the binomial
distribution

P (a 2 ⌃r |NM(a) = k) = Br,p(k) =

✓
r

k

◆
· pk · (1� p)r�k.

Random strings. We take the 26 letter alphabet A...Z and pick a subset
M of 10 elements. Then p = 10/26 ⇡ 0.385, and this is also the
expected value of the MFL rate ⌫M(a) for a 2 ⌃⇤. For strings of
length 10 we get the two middle columns of Table 2.

English strings. Assuming that the letters of an English string are inde-
pendent is certainly only a rough approximation to the truth, but the
best we can do for the moment, and, as it turns out, not too bad. Then
we take M = {ETOANIRSHD} and p = 0.739 and get the rightmost two
columns of Table 2.
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Table 2: Binomial distribution for r = 10. The columns headed “Total”
contain the accumulated probabilities.

p = 0.385 (Random) p = 0.739 (English)
Score Coe�cient Probability Total Probability Total
0 B10,p(0) 0.008 0.008 0.000 0.000
1 B10,p(1) 0.049 0.056 0.000 0.000
2 B10,p(2) 0.137 0.193 0.001 0.001
3 B10,p(3) 0.228 0.422 0.004 0.005
4 B10,p(4) 0.250 0.671 0.020 0.024
5 B10,p(5) 0.187 0.858 0.067 0.092
6 B10,p(6) 0.097 0.956 0.159 0.250
7 B10,p(7) 0.035 0.991 0.257 0.507
8 B10,p(8) 0.008 0.999 0.273 0.780
9 B10,p(9) 0.001 1.000 0.172 0.951
10 B10,p(10) 0.000 1.000 0.049 1.000

A Statistical Decision Procedure

What does this table tell us? Let us interpret the cryptanalytic task as a
decision problem: We set a threshold value T and decide:

• A string with score  T is probably random. We discard it.

• A string with score > T could be true plaintext. We keep it for further
examination.

There are two kinds of possible errors in this decision:

1. A true plaintext has a low score. We miss it.

2. A random string has a high score. We keep it.

Example. Looking at Table 2 we are tempted to set the threshold value
at T = 4. Then (in the long run) we’ll miss 2.4% of all true plaintexts
because the probability for an English 10 letter text string having an
MFL score  4 is 0.024. On the other hand we’ll discard only 67.1%
of all random strings and erroneously keep 32.9% of them.

The lower the threshold T , the more unwanted random strings will be se-
lected. But the higher the threshold, the more true plaintext strings will
be missed. Because the distributions of the MFL scores for “Random” and
“English” overlap there is no clear cutpoint that always gives the correct
decision.
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This is a typical situation for statistical decision problems (or tests). The
statistician usually bounds one of the two errors by a fixed amount, usually
5% or 1%, and calls this the error of the first kind, denoted by ↵. (The
complementary value 1 � ↵ is called the sensitivity of the test.) Then she
tries to minimize the other error, the error of the second kind, denoted
by �. The complementary value 1 � � is called the power (or specifity)
of the test. Friedman’s MFL-method, interpreted as a statistical test (for
the “null hypothesis” of English text against the “alternative hypothesis”
of random text), has a power of ⇡ 67% for English textstrings of length 10
and ↵ = 2.4%. This ↵-value was chosen because it is the largest one below
5% that really occurs in the sixth column of Table 2.

To set up a test the statistician faces two choices. First she has to choose
between “first” and “second” kind depending on the severity of the errors
in the actual context. In our case she wants to bound the number of missed
true plaintexts at a very low level—a missed plaintext renders the complete
cryptanalysis obsolete. On the other hand keeping too many random strings
increases the e↵ort of the analysis, but this of somewhat less concern.

The second choice is the error level ↵. By these two choices the statisti-
cian adapts the test to the context of the decision problem.

Remark. We won’t discuss the trick of raising the power by exhausting the
↵-level, randomizing the decision at the threshold value.

Note. There is another (“Bayesian”) way to look at the decision problem.
The predictive values give the probabilities that texts are actually
what we decide them to be. If we decide “random” for texts with MFL
score  4, we’ll be correct for about 671 of 1000 random texts and err
for 24 of 1000 English texts. This makes 695 decisions for random of
which 671 are correct. The predictive value of our “random” decision
is 96.5% ⇡ 671/695. The decision “English” for an MFL score > 4
will be correct for 976 of 1000 English texts and false for 329 of 1000
random texts. Hence the predictive value of the decision “English” is
about 75% ⇡ 976/1305. That means that if we pick up texts (of length
10) with a score of at least 5, then (in the long run) one out of four
selected texts will be random.

Other Languages: German and French

German: The ten most frequent letters are ENIRSATDHU. They make up
75.1% of an average German text.

French: The ten most frequent letters are EASNTIRULO. They make up
79.1% of an average French text.

With these values we supplement Table 2 by Table 3.
As before for English we get as conclusions for textstrings of length 10:



K. Pommerening, Language Statistics 7

Table 3: Distribution of MFL scores for r = 10

p = 0.751 (German) p = 0.791 (French)
Score Probability Total Probability Total
0 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000
3 0.003 0.003 0.001 0.001
4 0.016 0.019 0.007 0.008
5 0.058 0.077 0.031 0.039
6 0.145 0.222 0.098 0.137
7 0.250 0.471 0.212 0.350
8 0.282 0.754 0.301 0.651
9 0.189 0.943 0.253 0.904
10 0.057 1.000 0.096 1.000

German: With a threshold of T = 4 and ↵ = 1.9% the MFL-test has a
power of 67%. The predictive value for “German” is 75% ⇡ 981/1310.

French: With a threshold of T = 5 and ↵ = 3.9% the MFL-test has a
power of 86%. The predictive value for “French” is 87% ⇡ 961/1103.

Textstrings of length 20

The distribution is given in Table 4. We conclude:

English: With a threshold of T = 10 and ↵ = 1.9% the MFL-test has a
power of 90% and a predictive value of 91% ⇡ 981/1081.

German: With a threshold of T = 11 and ↵ = 4.0% the MFL-test has a
power of 96% and a predictive value of 96% ⇡ 960/1002.

French: With a threshold of T = 12 and ↵ = 4.1% the MFL-test has a
power of 98.5% and a predictive value of 98.5% ⇡ 959/974.
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Table 4: Distribution of MFL scores for r = 20

Random English German French
Score Prob Total Prob Total Prob Total Prob Total
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
2 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000
3 0.017 0.022 0.000 0.000 0.000 0.000 0.000 0.000
4 0.045 0.067 0.000 0.000 0.000 0.000 0.000 0.000
5 0.090 0.157 0.000 0.000 0.000 0.000 0.000 0.000
6 0.140 0.297 0.000 0.000 0.000 0.000 0.000 0.000
7 0.175 0.472 0.000 0.000 0.000 0.000 0.000 0.000
8 0.178 0.650 0.001 0.001 0.001 0.001 0.000 0.000
9 0.148 0.798 0.004 0.006 0.003 0.004 0.001 0.001
10 0.102 0.900 0.013 0.019 0.010 0.013 0.003 0.004
11 0.058 0.958 0.034 0.053 0.026 0.040 0.010 0.013
12 0.027 0.985 0.072 0.125 0.060 0.100 0.028 0.041
13 0.010 0.996 0.125 0.250 0.111 0.211 0.064 0.105
14 0.003 0.999 0.178 0.428 0.168 0.379 0.121 0.226
15 0.001 1.000 0.201 0.629 0.202 0.581 0.184 0.410
16 0.000 1.000 0.178 0.807 0.191 0.772 0.217 0.627
17 0.000 1.000 0.119 0.925 0.135 0.907 0.193 0.820
18 0.000 1.000 0.056 0.981 0.068 0.975 0.122 0.942
19 0.000 1.000 0.017 0.998 0.022 0.997 0.049 0.991
20 0.000 1.000 0.002 1.000 0.003 1.000 0.009 1.000


