
K. Pommerening, Rotor Machines 16

8 Cryptanalysis of Rotor Machines

The cryptanalysis of rotor machines is complex and depends on the details
of the machine under examination. The book by Deavours and Kruh [2]
is a standard work and contains many elaborate examples. Here we only
depict some general ideas:

• Superimposition

• Meet-in-the-middle

• Isomorphs

Superimposition

Assume that the cryptanalyst got hold of several ciphertexts that are en-
crypted with the same key, then he may align them in such a way that he gets
monoalphabetically encrypted columns. Note that this is a ciphertext-only
attack. However it needs lots of messages.

Note that operators impede this attack by changing the key (or initial
position) for each message. Nevertheless in some scenarios they have to send
many messages, think of war. Then with high probability the cryptanalyst
will observe many ciphertexts that are produced by the same rotor posi-
tions, not necessarily at the same position in the text. He identifies these
concordances by extensive calculation of coincidence indices.

Identification of a Fast Rotor

Assume that the set of rotors is known but not their actual choice. Assume
that the last rotor at the output side steps by one position with each letter,
and that the other rotors move infrequently. The attacker has no known
plaintext.

Enumerate the rotors from 1 (= input rotor, slow) to q (= output rotor,
fast), and assume the current flows from left to right as in Figure 6.

Now assume we have a ciphertext section of length m where only rotor
q moved, and for simplicity use the indices 1 to m for this sequence of
ciphertext letters. The rotors 1 to q−1 together effect a constant substitution
µ.

Therefore this part of the encryption follows the schema

a1 �→ b1 := µ(a1) �→ ρ(z1)q µ(a1) = c1
a2 �→ b2 := µ(a2) �→ ρ(z1+1)

q µ(a2) = c2
...

...
...

am �→ bm := µ(am) �→ ρ(z1+m−1)
q µ(am) = cm



K. Pommerening, Rotor Machines 17

Rotor No.

✲Input

1

ai �→
µ

. . .

q − 1

bi �→

q

ci

Output

Figure 6: Identifying the fast rotor

Here b = (b1, . . . , bm) ∈ Σm is a monoalphabetic image of a = (a1, . . . , am).
We can also look at b “from the other side”:

b1 =
�
ρ(z1)q

�−1
(c1)

b2 =
�
ρ(z1+1)
q

�−1
(c2)

...
...

bm =
�
ρ(z1+m−1)
q

�−1
(cm)

These formulas enable an exhaustion of the p choices for rotor q and of the
n choices for its initial position z1.

• A wrong choice of the rotor or its initial position makes b look as a
random text having coincidence index ϕ(b) ≈ 1

n .

• For the correct choice b is a monoalphabetically encrypted meaningful
text having coincidence index ϕ(b) ≈ κM , the coincidence index of the
plaintext language.

This observation may lead to the identification of the fast rotor and its state
for this section of the text at the price of n · p calculations of coincidence
indices of texts of length m. But note that the coincidence test for m = 26
has little power, it will miss most positive events.

Remarks

1. In principle the method works at each position of the text. Therefore
the very beginning of the text is worth a try.

2. In the unfavourable case one of the other rotors moved during the
encryption of them letters. Then the intermediate ciphertext b consists
of two different monoalphabetic pieces. With a bit of luck this also
leads to a somewhat conspicuous coincidence index.



K. Pommerening, Rotor Machines 18

Continuation of the Attack

As soon as the fast rotor is identified we can strip its effect off like a su-
perencryption. In this way the intermediate ciphertext (b1, . . . , bm) extends
to a ciphertext c� ∈ Σr that is the result of encrypting the plaintext a by a
much simpler machine.

If for example the rotors move like an odometer, and if the ciphertext
is long enough (≈ n2), then in a similar way we can identify the next rotor
and strip its effect off.

Or we try to cryptanalyze the monoalphabetic parts of c� that we expect
� r
n� in number of length n plus one or two fragments of total length r mod n.
We also might first try to find the locations were the second rotor moves.

Known Plaintext Attack

Assume we know or guess a piece of plaintext a = (a1, . . . , am), say a prob-
able word. An essential step is finding text chunks with identical numerical
patterns, also called isomorphs. Therefore this attack is known as Method

of Isomorphs. More generally looking at an intermediate step of an encryp-
tion algorithm from both sides, is called Meet-in-the-Middle.

Identification of a Fast Output Rotor

If we have a piece of known plaintext we may identify a fast rotor by sim-
ple pattern comparisons without calculating coincidence indices: Check if
the intermediate text (b1, . . . , bm) shows the same numerical pattern as
(a1, . . . , am).

Identification of a Fast Input Rotor

Known plaintext a = (a1, . . . , am) also allows the identification of the fast
rotor for a reverse odometer control where the left rotor is the fast one. In
this case we consider the situation of Figure 7.

Rotor No.

✲Input

1

ai �→
µ

2

bi

. . .

�→

q

ci

Output

Figure 7: Identifying a fast input rotor



K. Pommerening, Rotor Machines 19

This part of the encryption follows the schema

a1 �→ b1 := ρ(z1)1 (a1) �→ µ(b1) = c1
a2 �→ b2 := ρ(z1+1)

1 (a2) �→ µ(b2) = c2
...

...
...

am �→ bm := ρ(z1+m−1)
1 (am) �→ µ(bm) = cm

Here b = (b1, . . . , bm) is a monoalphabetic image of c = (c1, . . . , cm). We try
all p rotors in all their n initial positions until the numerical patterns of b
and c coincide.


