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5 The Control Logic of a Rotor Machine

We treat several approaches to rotor stepping. The first three are streamlined
versions of real control mechanisms that in practice are implemented in a
more complex way: the odometer, the gear drive with gaps, the gear drive
with different number of cogs. We also treat the ultimate mechanism: the
pseudorandom stepping, and a historical one: the Hebern mechanism. For
the stepping of the Enigma we refer to Chapter 6.

The insight that an irregular movement is the essential ingredient for
a secure rotor machine is apparently due to Friedman after he broke he
Hebern machine. He himself, together with his collaborator Rowlett,
then in several steps developed the top-level rotor machine, the SIGABA.

Example 1: The Odometer Logic

The rotors step like in a mechanical counter or electricity meter. Assume
the rotors are mounted as in Figure 4. The rightmost rotor moves by one
position for each input letter. Each rotor, after completing one revolution,
by some kind of protrusion makes its left neighbor move by one position.

Rotor No.

✲Input

1 2

. . .

q

✲Output

Figure 4: Odometer logic

Using the identification of the states with the integers mod nq the se-
quence of states simply corresponds to the natural sequence of numbers
beginning with the initial state.

Remarks

1. In this example the rightmost rotor, rotor number q, is a “fast”
rotor, it moves with every step.

2. The leftmost rotor, number 1, is a “slow” rotor. It moves only
after nq−1 steps, that is almost never, or only for very long mes-
sages. For this reason it makes little sense to use more then three
rotors with odometer stepping. The effect of all additional rotors
together only amounts to a fixed substitution. In the best case
they could move once during encryption, effecting two different
fixed substitutions.
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3. Of course we could also implement the converse stepping where
rotor 1 is fast and rotor q is slow.

4. The sequence of states has period nq.

Example 2: Gaps

Figure 5 shows the principle of this control logic. For an implementation we
have several mechanical options, for example a pin wheel.

!"#$%

Figure 5: Gear drive with tooth gaps

A single wheel is characterized by a binary vector

u(j) = (uj0, . . . , uj,t−1) ∈ Ft
2 for j = 0, . . . , t− 1

where t is the circumference of the wheel, not necessarily t = n. A 1 denotes
a cog, a 0, a gap. We may describe all the wheels together by a binary matrix

u =




u10 . . . u1,t−1
...

. . .
...

uq0 . . . uq,t−1



 ∈ Mqt(F2)

The column vectors

u(i) = (u1i, . . . , uqi) ∈ Fq
2 for i = 0, . . . , q − 1

apply one after the other from left to right, cyclically repeated. This gives a
sequence of period t for the states of the gear drive. The states of the rotors
generally have a much larger period.

In the simplest case this logic steps the rotor j

• by one position, if uji = 1,

• not at all, if uji = 0,

for the i-th plaintext letter. This gives the formula

z(i+1) = z(i) + u(i)

where addition is vector addition in (Z/nZ)q.
Another way to use gap wheels is turning them around a full turn in

each step. Then the each of the rotors moves a number of steps given by the
corresponding row sum in the matrix. This logic is equivalent with Example
3 below.
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Example 3: Different Gear Wheels

Each rotor is driven by its own gear wheel. These share a common axis and
make a full turn in each step. If wheel i has ni cogs, then rotor i moves by
ni positions. The states occur with a period of lcm(n1, . . . , nq).

The first models of Enigma (A and B) had a control like this.

Example 4: Pseudorandom Stepping

The rotor stepping is controlled by a (pseudo-) random generator, that is a
mechanism or an algorithm that generates numbers indinguishable from pure
random such as generated with the help of dice. This is easy for a computer
simulation. For an (electro-) mechanical rotor machine one can use a key
generating mechanism such as in one of the (later) Hagelin machines.

Friedman was the first to detect the weaknesses of a regular rotor step-
ping when he analyzed the then current rotor machines in the 1920’s. He
came up with the idea of an irregular stepping by a pseudorandom mech-
anism. First he tried a punched paper tape, but this proved not robust
enough. Then Rowlett had the idea of realizing the stepping control by
another set of rotors. Thus the American super rotor machine SIGABA was
invented.

For details see the book

Stephen J. Kelly: Big Machines. Aegean Park Press, Walnut
Creek 2001, ISBN 0-89412-290-8.

Example 5: The Hebern Machine

The Hebern machine has q = 5 rotors and uses the standard alphabet
with n = 26. The stepping follows an odometer logic, but with a complex
mechanism that doesn’t affect the neighboring rotor but another one, in
more detail:

• Rotors 2 and 4 don’t rotate at all. They are “stators”.

• Rotor 5 moves by 1 position with every step, it is a fast rotor.

• Rotor 1 moves by 1 position with each complete turn of rotor 5. It is
a “semi-fast” rotor.

• Rotor 3 moves by 1 position with each complete turn of rotor 1. It is
a slow rotor.

Moreover the rotors move in the other direction compared with the descrip-
tion in Section 2.

The equation for the state change—not yet the correct one!—is

g(z1, z2, z3, z4, z5) = (z1 + λ(z5), z2, z3 + λ(z1)λ(z5), z4, z5 + 1)
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where λ(x) = δx,25 is the Kronecker symbol. The states occur with period
263 = 17576.

Characteristic features:

• That the rotors 2 and 4 are static doesn’t harm the security of
the machine. By the odometer logic they would move only after
263 or 264 steps, that is only for extremely long messages.

• The stepping of rotor 1 (resp. 3) is induced by rotor 5 (resp. 1)
moving from position “N” to position “O”. The correct equation
for the state change is left as an exercise to the reader.

• The wiring between the keyboard and rotor 1 as well as from
rotor 5 to the light bulbs is irregular but static. It therefore is
assumed as known to the enemy. We may interpret this wiring as
two additional stators, one at each end of the rotor pack.

• For decryption there is a switch “direct/reverse” that inter-
changes input contacts and output contacts.

• The Hebern rotors are symmetric: they may be mounted with
their sides interchanged. This makes the number of possible pri-
mary keys larger by a factor of 25.


